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Introduction
«¡Qué altos

los balcones de mi casa!»
Rafael Alberti

This is an electronic version of the thesis which was updated beyond the submitted deadline. The newest
version is available in my web page. Last updated: August 14, 2023.

Every modern account of representation theory feeds on the world of combinatorics. This is especially
notable in type A representation theory, where the combinatorial models are further developed and
better established. In particular, many aspects of character theory have been reduced to purely combi-
natorial problems.

Characters of representations in type A (that is, complex representations of S𝑛 , GL(𝑛), or 𝔰𝔩(𝑛)) may
be understood as symmetric polynomials. In particular, characters of irreducible representations of 𝔰𝔩(𝑛)
are identified with a family of symmetric polynomials known as Schur polynomials. On the other hand,
these agree with the generating functions of certain classes of combinatorial objects called semistandard
Young tableaux. This enables one to study some properties of the original representation (namely, those
properties encapsulated by the character) in a combinatorial way. Reciprocally, representation theory
often provides results on symmetric functions and tableaux that are only later tackled combinatorially.

For the other classical types (orthogonal and symplectic Lie algebras), the combinatorics are not as
well-studied. There are many reasons for this, e.g. there is more interest in the properties of S𝑛 than
in the properties of the other Weyl groups or the Brauer algebras of types B, C, and D. However, there
have been many efforts to change this situation. We compare and contrast three distinct approaches.

The first approach, initiated by King [Kin76], and continued by Stanley, Sundaram [Sun86, Sun90],
and others, is to mimic as closely as possible the combinatorics of type A. For this matter, the analogue
of Schur polynomials in other types are defined as some generating functions of some kinds of tableaux.
This may be referred to as the combinatorialist approach.

Another approach is representation theoretic in nature. The symmetric polynomials are defined
via Weyl’s character formula, and studied via crystal theory. The development of crystal theory by
Kashiwara and Nakashima enabled them to identify their crystal bases in each type with some kind
of tableaux [KN94, HK02, Lit90, BS17] (in particular, recovering the definition of semistandard Young
tableaux for type A). This may be referred to as the Lie theorist approach.

A final strategy is to proceed purely algebraically: the algebraist approach. In this line, Koike and
Terada [KT87] provide formulas to compute the irreducible characters of types B, C, and D in terms of
usual symmetric polynomials [FH91]. In a later stage, these formulas may be explained combinatorially
[Oka89, SV16, FK97].

It is our goal in this thesis to present these three approaches, as well as to establish connections
between them. We try to develop the theory for all types simultaneously, but focusing on types C and
B; the combinatorics of type D are less well-understood and a complete survey of the literature is beyond
the scope of this work.
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We therefore introduce our irreducible characters three times. We begin by giving their Lie theoretic
definition in Chapter 3, as characters of the irreducible representations of the classical Lie algebras.
In Chapter 4, we introduce some combinatorial models that let us define these characters as certain
generating functions, as part of the combinatorialist approach. Inspired by the classical proof of well-
definedness of this definition for type A, due to Bender and Knuth [BK72], we give in Chapter 5 a first
self-contained and elementary proof of well-definedness of this combinatorial definition for types B and
C.

For the algebraist approach, a third definition of the irreducible characters is given in Chapter 6 in the
form of two theorems. This allows one to write our type B and C irreducible characters as specializations
of certain type A symmetric polynomials. Mimicking type A theory [Lin73, GV85], we show that these
agree with the combinatorial definitions via a lattice path argument, originally developed in [Oka89].
We show that the algebraic definition agrees with the Lie theoretic definition in Chapter 7. (In particular,
note that this shows indirectly that the combinatorial and the Lie theoretic definitions agree.)

In Chapter 8, we discuss different combinatorial models for type C. In particular, we define the
tableaux which arise from crystal theory (as part of the Lie theorist approach). We describe said crys-
tal structure in Chapter 9. Notably, we state novel descriptions of a type of tableaux due to De Concini
[DeC79], and we postpone the proofs to Appendix C. With this and invoking the theory of crystal bases,
we are able to show in Chapter 10 that the combinatorial and the Lie theoretic definitions agree. In total,
we give two proofs of this fact.

A SageMath library for the different type C combinatorial models is included in Appendix D.
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Chapter 1

A preliminary account of symmetric
polynomials

In this chapter we give a self-contained introduction to the theory of symmetric polynomials via the
study of three families of polynomials. In particular, we work towards some results that will be useful
later in this work. We refer to [ALRS13, Sag01, Sam17, Sta99] for a more detailed and complete account
of these objects.

Definition 1.1. A symmetric polynomial in 𝑛 variables is a multivariate polynomial with complex
coefficients that is invariant by any permutation of its variables. We call Λ𝑛 the set of symmetric poly-
nomials in 𝑛 variables.

Sums and products of symmetric polynomials are again symmetric. Therefore, Λ𝑛 has an algebra
structure. Unless otherwise specified, we fix some variables 𝑥1, ..., 𝑥𝑛 and write Λ𝑛 = C[𝑥1, ..., 𝑥𝑛]S𝑛 .

Theorem 1.2. The ring Λ𝑛 inherits a Z-graded algebra structure Λ𝑛 =
⊕

𝑑≥0 Λ
𝑑
𝑛 from the algebra

C[𝑥1, ..., 𝑥𝑛], where Λ𝑑𝑛 := Λ𝑛 ∩ C[𝑥1, ..., 𝑥𝑛]𝑑 is the degree 𝑑 part of Λ𝑛 . ■

We typically represent these as polynomials in 𝑥1, ..., 𝑥𝑛 and say that they are evaluated at the
alphabet 𝑋 = 𝑥1 + · · · + 𝑥𝑛 . We may use the notations 𝑓 , 𝑓 (𝑥1, ..., 𝑥𝑛), and 𝑓 (𝑋 ) interchangeably for
elements of Λ𝑛 . We write Λ𝑛 (𝑋 ) whenever we want to explicitly indicate the alphabet in which the
polynomials are evaluated.

Notation. We write alphabets as sums (rather than tuples) to emphasize that the order of the variables
does not matter. Another feature of this notation is the following: given two alphabets 𝑋 = 𝑥1 + · · · + 𝑥𝑛
and 𝑌 = 𝑦1 + · · · + 𝑦𝑚 , one may write 𝑓 (𝑋 + 𝑌 ) to refer to a symmetric function in Λ𝑚+𝑛 (𝑋 + 𝑌 ) = Λ𝑚+𝑛 .

We let 0 be the empty alphabet. That is, for 𝑓 ∈ Λ𝑛 , we have 𝑓 (𝑋 +0) := 𝑓 (𝑋 ) ∈ Λ𝑛 . For 𝑓 ∈ Λ𝑛+1, we
define 𝑓 (𝑋 +1) as the polynomial 𝑓 (𝑥1, ..., 𝑥𝑛, 1) ∈ Λ𝑛 . In general, however, it will not be useful to think of
symmetric polynomials as functions, but rather as formal sums or generating functions (this will become
useful later). In particular, one should not confuse 𝑓 (𝑋 ) with a symmetric polynomial in one variable
evaluated at a sum.

As a remark, this notation makes sense in a broader context. It is an instance of plethystic substitution
[Sta99, ALRS13].

It is of central importance in the study of symmetric polynomials to describe, analyze, and relate
various bases ofΛ𝑛 . These bases will turn out to be indexed by partitions, which are weakly decreasing
finite sequences of non-negative integers, e.g. _ = (7, 4, 4, 4, 2, 1, 0, 0). We say _1 = 7, _2 = 4, ... are the
parts of _. By convention, tailing 0s are ignored when expressing the partition, and _𝑁 for 𝑁 ≫ 1 is
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taken to be 0. Also, repeated parts are indicated by an exponent. For instance, _ = (7, 43, 2, 1). Given a
positive integer 𝑑 , we write _ ⊢ 𝑑 and say that _ is a partition of 𝑑 if

∑
_𝑖 = 𝑑 . Reciprocally, we define

by |_ | := ∑
_𝑖 the size of _. The number of nonzero parts of _ is denoted by 𝑙 (_) and called the length of

_. We often represent partitions through their Young diagram, which we obtain by drawing an array
of left-justified boxes, with _𝑖 boxes in row 𝑖 . The transpose _′ of a partition _ is the partition whose
Young diagram is the transpose of the Young diagram of _.

Example 1.3. Let _ = (7, 43, 2, 1). We write

_ = and _′ = = (6, 5, 42, 13).

We may now define three important families of symmetric polynomials.

Definition 1.4. Given a partition _ = (_1, ..., _𝑙 ), themonomial symmetric polynomial𝑚_ indexed
by _ is the sum over the S𝑛-orbit of 𝑥_ := 𝑥_11 𝑥

_2
2 · · · 𝑥

_𝑙
𝑙
. (Here, the orbit is interpreted as a set, rather

than a multiset.)

Example 1.5. Let 𝑛 = 3 (that is, 𝑋 = 𝑥1 + 𝑥2 + 𝑥3). Then,

𝑚 =
∑︁

𝑦∈S3 .𝑥

𝑦 = 𝑥21𝑥
2
2 + 𝑥

2
1𝑥

2
3 + 𝑥

2
2𝑥

2
3 .

Since any symmetric polynomial 𝑓 =
∑
𝛼 𝑐𝛼𝑥

𝛼 can be written as 𝑓 =
∑
_ 𝑐_𝑚

_ , we conclude that
{𝑚_}_⊢𝑑 is a basis of Λ𝑑𝑛 . It is our goal now to show that the next two families of symmetric polynomials
also form bases of Λ𝑑𝑛 .

Definition 1.6. Let 𝑑 be a non-negative integer. The elementary symmetric polynomial 𝑒𝑑 ∈ Λ𝑑𝑛
indexed by 𝑑 is the symmetric polynomial given by the sum of all square-free monomials of degree
𝑑 . The completely homogeneous symmetric polynomial ℎ𝑑 ∈ Λ𝑑𝑛 indexed by 𝑑 is the symmetric
polynomial given by the sum of all monomials of degree 𝑑 .

Given a partition _, we let 𝑒_ :=
∏
𝑒_𝑖 and ℎ_ :=

∏
ℎ_𝑖 .

Example 1.7. Let 𝑛 = 3 (that is, 𝑋 = 𝑥1 + 𝑥2 + 𝑥3).

𝑒 = 𝑒2𝑒1 = (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) (𝑥1 + 𝑥2 + 𝑥3)

= 𝑥21𝑥2 + 𝑥1𝑥
2
2 + 𝑥

2
1𝑥3 + 3𝑥1𝑥2𝑥3 + 𝑥

2
2𝑥3 + 𝑥1𝑥

2
3 + 𝑥2𝑥

2
3

=𝑚 + 3𝑚 ,

ℎ = ℎ2 = 𝑥21 + 𝑥1𝑥2 + 𝑥
2
2 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥

2
3

=𝑚 +𝑚 .

Theorem 1.8. The set {𝑒_}_⊢𝑑 of elementary symmetric polynomials indexed by partitions of 𝑑 is a basis
of Λ𝑑𝑛 .

For the purpose of this proof, we need to introduce a partial order on partitions of a fixed size 𝑑 ,
called the dominance order: _ ⊵ ` if and only if _1 + · · · + _𝑖 ≥ `1 + · · · + `𝑖 for all 𝑖 . An immediate
property of this order is that _ ⊴ ` if and only if ` ′ ⊴ _′. Indeed, by contradiction, if

∑𝑖 _′𝑗 ≤
∑𝑖 ` ′𝑗 for

all 𝑖 = 1, ..., 𝑖0 but
∑𝑖0 _′𝑗 >

∑𝑖0 ` ′𝑗 , then

`𝑖0∑︁
(` 𝑗 − 𝑖0) = ` ′𝑖0+1 + `

′
𝑖0+2 + · · · > _

′
𝑖0+1 + _

′
𝑖0+2 + · · · =

_𝑖0∑︁
(_ 𝑗 − 𝑖0) ≥

`𝑖0∑︁
(_ 𝑗 − 𝑖0),
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which gives
∑`𝑖0 ` 𝑗 >

∑`𝑖0 _ 𝑗 , a contradiction. The reciprocal is shown similarly.
The reverse lexicographic order (≤) defines a total order on the set of partitions of size 𝑑 which is

compatible with the dominance order. Bases of Λ𝑑𝑛 will be thought as ordered bases in the following.

Proof. Fix _ ⊢ 𝑑 and express 𝑒_ in terms of the monomial basis, 𝑒_ =
∑
` 𝑎_,`𝑚` . From the definition of

elementary symmetric polynomials and monomial symmetric polynomials, we note that 𝑎_,` ≥ 0 for
all _, `. If 𝑎_,` ≠ 0, then we claim _′ ≥ `. Indeed, write 𝑒_ = 𝑒_1 · · · 𝑒_𝑙 . Then, the biggest possible value
of `1 among the partitions ` such that 𝑥` appears in 𝑒_ is precisely the number of factors, 𝑙 (_) = _′1.
For such a `, the biggest possible value of `2 is the number of factors that are not 𝑒1, which is _′2. This
reasoning gives _′ as the biggest partition ` such that 𝑎_,` ≠ 0. Furthermore, 𝑎_,_′ = 1.

Thismeans that thematrix that transforms {𝑒_}_⊢𝑑 into {𝑚_}_⊢𝑑 can bewritten as a triangularmatrix
with 1s in the diagonal. In particular it is invertible. Therefore {𝑒_}_⊢𝑑 is a basis of Λ𝑑𝑛 . ■

Corollary 1.9. The set {𝑒𝑖 }𝑖>0 is a set of algebraically independent generators of Λ𝑛 . ■

Note 1.10. The coefficients in this change of basis matrix have a combinatorial interpretation in terms of
some 0-1-matrices. The interested reader may find this in [Sta99].

There is another way of thinking about these latter two families of symmetric polynomials; as gen-
erating functions. Although seemingly arbitrary, it will be apparent later how this interpretation is
relevant to algebraic combinatorialists. We let [𝑛] denote {1, ..., 𝑛}.

Proposition 1.11. Fix an integer 𝑛 (and, in turn, an alphabet 𝑋 ).

1. The elementary symmetric polynomial 𝑒𝑑 agrees with the generating function of strictly increasing
sequences in [𝑛]𝑑 .

2. The completely homogeneous symmetric polynomialℎ𝑑 agrees with the generating function of weakly
increasing sequences in [𝑛]𝑑 .

Proof. Given a square-free monomial 𝑥𝑖1 · · · 𝑥𝑖𝑑 consider the tuple (𝑖1, ..., 𝑖𝑑 ) of its indexes, which we
may assume to be strictly increasing without loss of generality. This gives a bijection from the set of
summands of 𝑒𝑑 to the set of strictly increasing sequences in [𝑛]𝑑 .

Given a monomial 𝑥𝑖1 · · · 𝑥𝑖𝑑 consider the tuple (𝑖1, ..., 𝑖𝑑 ) of its indexes, which we may assume to be
weakly increasing without loss of generality. This gives a bijection from the set of summands of ℎ𝑑 to
the set of weakly increasing sequences in [𝑛]𝑑 . ■

Theorem 1.12. We have the following identities:

𝐸 (𝑡) :=
∑︁
𝑑≥0

𝑒𝑑𝑡
𝑑 =

∏
𝑖∈[𝑛]
(1 + 𝑥𝑖𝑡) and 𝐻 (𝑡) :=

∑︁
𝑑≥0

ℎ𝑑𝑡
𝑑 =

∏
𝑖∈[𝑛]

1

1 − 𝑥𝑖𝑡
.

Proof. We show the second identity, the other one is shown similarly. Expand (1−𝑥𝑖𝑡)−1 as a geometric
series, 1 + 𝑥𝑖𝑡 + 𝑥2𝑖 𝑡2 + · · · . Now, a monomial in the right hand side of the identity has 𝑡-degree 𝑑 if and
only if it has 𝑥-degree 𝑑 . We obtain such a monomial by choosing an element from each factor in the
product. All 𝑥-monomials of degree 𝑑 can be obtained this way and each one appears only once. ■

By looking at the term of 𝑡-degree 𝑑 of the equation 𝐻 (𝑡)𝐸 (−𝑡) = 1, we get the following identity.

Corollary 1.13. For each 𝑑 ≥ 1, we have
∑𝑑
𝑖=0 (−1)𝑖𝑒𝑖ℎ𝑑−𝑖 = 0. ■

The relationship between {𝑒_}_ and {ℎ_}_ seen in these previous results culminates in the form of
an involution.
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Definition-theorem 1.14. Let 𝜔 : Λ𝑛 → Λ𝑛 be an algebra homomorphism defined on {𝑒𝑖 }𝑖>0 by
𝜔 (𝑒𝑖 ) = ℎ𝑖 . It is an involution, referred to as the 𝜔 involution.

Proof. We check that the 𝜔 involution is an involution. Consider Corollary 1.13. Taking 𝜔 yields

0 =

𝑑∑︁
𝑖=0

(−1)𝑖ℎ𝑖𝜔 (ℎ𝑑−𝑖 ) = (−1)𝑑
𝑑∑︁
𝑖=0

(−1)𝑖𝜔 (ℎ𝑖 )ℎ𝑑−𝑖

for each 𝑑 . But then, the generating function of {𝜔 (ℎ𝑖 )}𝑖>0 is 𝐸 (𝑡), showing that 𝜔 (ℎ𝑖 ) = 𝑒𝑖 for all 𝑖 . ■

Since the 𝜔 involution is an homomorphism and an involution, it is in particular an automorphism.
This, combined with Theorem 1.8 gives the following result.

Corollary 1.15. The set {ℎ_}_⊢𝑑 of completely homogeneous symmetric polynomials indexed by partitions
of 𝑑 is a basis of Λ𝑑𝑛 . The set {ℎ𝑖 }𝑖>0 is a set of algebraically independent generators of Λ𝑛 . ■

Note 1.16. The𝜔 involution gives, up to sign, an antipode for a Hopf algebra structure on Λ𝑛 , in which the
comultiplication can be chosen to be either the plethysm or the Kronecker product of symmetric functions.
See [ALRS13] for a detailed description of the structure.



Chapter 2

Representation theory of the
classical Lie algebras

We assume familiarity with Lie theory [Hum72, Bou02, Str22]. Nevertheless, when trying to study
the classical Lie algebras, there are some (somewhat arbitrary) choices to be made. We dedicate this
chapter to fix the notations, presentations, and realizations of these objects explicitly. In particular, our
conventions will often differ from [Hum72] and [Bou02].

2.1 The classical Lie algebras
Our work will provide tools to study the so-called classical Lie algebras. There is no unique definition to
what constitutes a classical Lie algebra, so clarification is needed. In this work, the classical Lie algebras
are

(A) the special linear (Lie) algebra 𝔰𝔩(𝑛) and the general linear (Lie) algebra 𝔤𝔩(𝑛) of degree 𝑛,
for 𝑛 ∈ Z>0,

(B) the (odd) special orthogonal (Lie) algebra 𝔰𝔬(2𝑛 + 1) of degree 2𝑛 + 1, for 𝑛 ∈ Z>0,

(C) the (even) symplectic (Lie) algebra 𝔰𝔭(2𝑛) of degree 2𝑛 + 1, for 𝑛 ∈ Z>0, and

(D) the (even) special orthogonal (Lie) algebra 𝔰𝔬(2𝑛) of degree 2𝑛, for 𝑛 ∈ Z>0.

We may refer to them as the Lie algebras of type A, B, C, and D, respectively. In the following, we
will define each of these Lie algebras and fix matrix realizations for each of them.

Definition 2.1. Let 𝑉 be a vector space over C.

• We define 𝔤𝔩(𝑉 ) as the Lie algebra of endomorphisms of𝑉 with the commutator bracket [𝐴, 𝐵] :=
𝐴𝐵 − 𝐵𝐴, and 𝔰𝔩(𝑉 ) as the Lie subalgebra of 𝔤𝔩(𝑉 ) given by the trace 0 endomorphisms.

• Let (·, ·) be a symmetric non-degenerate bilinear form on𝑉 . We define 𝔰𝔬(𝑉 ) as the Lie subalgebra
of 𝔤𝔩(𝑉 ) given by {𝐴 ∈ 𝔤𝔩(𝑉 ) : (𝐴𝑥,𝑦) + (𝑥,𝐴𝑦) = 0 for all 𝑥,𝑦 ∈ 𝑉 }.

• Let (·, ·) be a skew-symmetric non-degenerate bilinear form on 𝑉 . We define 𝔰𝔭(𝑉 ) as the Lie
subalgebra of 𝔤𝔩(𝑉 ) given by {𝐴 ∈ 𝔤𝔩(𝑉 ) : (𝐴𝑥,𝑦) + (𝑥,𝐴𝑦) = 0 for all 𝑥,𝑦 ∈ 𝑉 }.

We write 𝔤𝔩(𝑁 ), 𝔰𝔩(𝑁 ), 𝔰𝔬(𝑁 ) and 𝔰𝔭(𝑁 ) if 𝑉 = C𝑁 .

9
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Note 2.2. It is an easy exercise to check that these sets define Lie subalgebras. To show that the sec-
ond and third items do not depend on the choice of form, we note that any two given symmetric (resp.
skew-symmetric) invertible matrices are conjugate. This conjugation gives the isomorphism between two
different realizations of the Lie algebras.

In what comes, we will fix bilinear forms and thus realizations for 𝔰𝔬(𝑁 ) and 𝔰𝔭(𝑁 ). Let 𝐽𝑁 =

antidiag{1, ..., 1}.

Definition 2.3. Let 𝐴 = {𝑎𝑖, 𝑗 }𝑖, 𝑗 ∈ 𝔤𝔩(𝑁 ). We define the anti-transpose of 𝐴 as the matrix 𝐴 t⃝ :=
{𝑎𝑁+1−𝑗,𝑁+1−𝑖 }𝑖, 𝑗 .

Example 2.4. For instance, (
1 2 3
4 5 6
7 8 9

) t⃝
=

(
9 6 3
8 5 2
7 4 1

)
.

Lemma 2.5. If we let (·, ·) be the symmetric non-degenerate bilinear form given by 𝐽𝑁 , then

𝔰𝔬(𝑁 ) = {𝐴 ∈ 𝔤𝔩(𝑁 ) : 𝐴 t⃝ = −𝐴}.

(In particular, note that when 𝑁 is odd, the antidiagonal entries vanish.)

Proof. Let 𝐴 ∈ 𝔰𝔬(𝑁 ). We have (𝐴𝑥,𝑦) = −(𝑥,𝐴𝑦) for all 𝑥,𝑦 ∈ C𝑁 . That is,
∑
𝑖 𝑗 𝑎𝑁+1−𝑗,𝑖𝑥𝑖𝑦 𝑗 =

−∑
𝑖 𝑗 𝑎𝑁+1−𝑖, 𝑗𝑥𝑖𝑦 𝑗 . So we deduce 𝑎𝑖 𝑗 = −𝑎𝑁+1−𝑗,𝑁+1−𝑖 for all 𝑖 and 𝑗 . ■

Lemma 2.6. If we let (·, ·) be the skew-symmetric non-degenerate bilinear form given by
(

𝐽𝑛
−𝐽𝑛

)
, then

𝔰𝔭(2𝑛) =
{
𝐴 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝔤𝔩(2𝑛) : 𝑑 = −𝑎 t⃝, 𝑏 = 𝑏 t⃝, 𝑐 = 𝑐 t⃝}

,

where 𝑎, 𝑏, 𝑐 and 𝑑 are understood as elements of 𝔤𝔩(𝑛).

Proof. Set 𝑁 = 2𝑛 + 1, let 𝐴 ∈ 𝔰𝔭(2𝑛). We have (𝐴𝑥,𝑦) = −(𝑥,𝐴𝑦) for all 𝑥,𝑦 ∈ C2𝑛 . That is,∑︁
𝑖<𝑁

∑︁
𝑗<𝑁

(−1)𝛿 𝑗≤𝑛𝑎𝑁−𝑗,𝑖𝑥𝑖𝑦 𝑗 =
∑︁
𝑖<𝑁

∑︁
𝑗<𝑁

(−1)𝛿𝑖≤𝑛𝑎𝑁−𝑖, 𝑗𝑥𝑖𝑦 𝑗 .

So we deduce 𝑎𝑖 𝑗 = (−1)𝛿𝑖≤𝑛 (−1)𝛿 𝑗≤𝑛𝑎𝑁−𝑗,𝑁−𝑖 for all 𝑖 and 𝑗 . ■

The general and the special linear Lie algebras

A basis for 𝔤𝔩(𝑛) is given by the elementary matrices 𝐸𝑖 𝑗 for 𝑖, 𝑗 = 1, ..., 𝑛. A basis of 𝔰𝔩(𝑛) is given by

{𝐸𝑖 𝑗 : 𝑖 ≠ 𝑗} ⊔ {𝐸𝑖,𝑖 − 𝐸𝑖+1,𝑖+1 : 𝑖 = 1, ..., 𝑛 − 1}.

They have dimensions 𝑛2 and 𝑛2 − 1, respectively.

Lemma 2.7. The Lie algebra 𝔤𝔩(𝑛) is a (trivial) central extension of 𝔰𝔩(𝑛) by C𝐼 .

We recall here the relevant definitions. We say that a Lie algebra 𝔟 is a central extension of 𝔠 by 𝔞 if
there is a short exact sequence of Lie algebra homomorphisms 𝔞 → 𝔟→ 𝔠 and [𝔞, 𝔟] = 0. We say it is a
trivial extension if the short exact sequence splits. For details, we refer to [Str22] or to [Sch08, Ch. 4].

Proof. Consider the short exact sequence C𝐼 → 𝔤𝔩(𝑛) → 𝔰𝔩(𝑛) where the first map is inclusion and
the second map is 𝑥 ↦→ 𝑥 − tr𝑥

𝑛
𝐼 . These are both Lie algebra homomorphisms. We have a splitting

𝔰𝔩(𝑛) → 𝔤𝔩(𝑛) given by the inclusion. ■
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In particular, 𝔤𝔩(𝑛) is not semisimple. Below, we’ll see how representations of 𝔤𝔩(𝑛) can be studied
from the representations of 𝔰𝔩(𝑛). We now study the structure of 𝔰𝔩(𝑛).
Lemma 2.8. A Cartan subalgebra of 𝔰𝔩(𝑛) is given by the set 𝔥 = 𝔥𝔰𝔩 (𝑛) of diagonal matrices of 𝔰𝔩(𝑛).
Proof. We have that [𝔥, 𝔥] = 0, therefore 𝔥 is nilpotent. Its normalizer 𝑁𝔰𝔩 (𝑛) (𝔥) is the set of matrices
𝑥 ∈ 𝔰𝔩(𝑛) such that [𝑥, 𝔥] ⊆ 𝔥. We have [𝑥, ℎ] = 𝑥ℎ − ℎ𝑥 ∈ 𝔥 for all ℎ ∈ 𝔥. In particular, for 𝑖 ≠ 𝑗 , we
have (𝑥ℎ)𝑖 𝑗 = 𝑥𝑖 𝑗ℎ𝑖𝑖 = (ℎ𝑥)𝑖 𝑗 = 𝑥𝑖 𝑗ℎ 𝑗 𝑗 for all ℎ ∈ 𝔥. Necessarily, 𝑥𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 , and thus 𝑥 ∈ 𝔥. So
𝑁𝔰𝔩 (𝑛) (𝔥) = 𝔥. ■

We will hereafter refer to 𝔥 as the Cartan subalgebra of 𝔰𝔩(𝑛), by abuse of language. Let 𝔥∗ = 𝔥∗
𝔰𝔩 (𝑛)

be its dual space. It has a basis given by {𝜖𝑖+1 − 𝜖𝑖 }𝑖<𝑛 , where 𝜖𝑖 (𝐸 𝑗 𝑗 ) = 𝛿𝑖 𝑗 .
Since a Cartan subalgebra 𝔥𝔤 of a semisimple Lie algebra 𝔤 is abelian, we can write

𝔤 =
⊕
𝛼 ∈𝔥∗

𝔤𝛼 ,

where 𝔤𝛼 := {𝑥 ∈ 𝔤 : [𝑥, ℎ] = 𝛼 (ℎ)𝑥 ∀ℎ ∈ 𝔥𝔤}. We say that 𝔤𝛼 is a root space if it is nonzero and 𝛼 is
nonzero.

Let (𝔰𝔩(𝑛))𝛼 be a root space, let 𝑥 ∈ (𝔰𝔩(𝑛))𝛼 . Write 𝛼 =
∑
𝑖<𝑛 𝑎𝑖 (𝜖𝑖+1 − 𝜖𝑖 ). Then, for all ℎ ∈ 𝔥𝔰𝔩 (𝑛) ,

we have ℎ𝑥 − 𝑥ℎ = (∑𝑎𝑘 (ℎ𝑘𝑘 − ℎ𝑘+1,𝑘+1))𝑥 . In particular, (ℎ𝑖𝑖 − ℎ 𝑗 𝑗 )𝑥𝑖 𝑗 = (
∑
𝑎𝑘 (ℎ𝑘+1,𝑘+1 − ℎ𝑘𝑘 ))𝑥𝑖 𝑗 for

all ℎ, 𝑖, 𝑗 . This means that 𝑥𝑖 𝑗 = 0 for all except one (𝑖, 𝑗) pair, 𝑖 ≠ 𝑗 , and that 𝛼 = 𝜖𝑖 − 𝜖 𝑗 . This shows
that there at most 𝑛2 − 𝑛 roots.

Since 𝔰𝔩(𝑛)0 = 𝔥 and since dim(𝔰𝔩(𝑛)) − dim(𝔥𝔰𝔩 (𝑛) ) = 𝑛2 − 𝑛, all the previous elements are indeed
roots. We have shown the following theorem.

Theorem 2.9. The Lie algebra 𝔰𝔩(𝑛) has 𝑛2 − 𝑛 roots, given by 𝜖𝑖 − 𝜖 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 with 𝑖 ≠ 𝑗 . ■

The abstract root system that these form is called 𝐴𝑛−1.

Theorem 2.10. The root system 𝐴𝑛−1 has rank 𝑛 − 1. In 𝔰𝔩(𝑛), a basis of the root system is given by
{𝜖𝑖+1 − 𝜖𝑖 }𝑖<𝑛 .
Proof. Root systems of a Lie algebra span the dual of the Cartan subalgebra. In this case, dim(𝔥𝔰𝔩 (𝑛) ) =
𝑛 − 1, which shows the first statement. To show that the given set is a basis, we need to check (a) it is a
basis of 𝔥∗

𝔰𝔩 (𝑛) , and (b) every root can be written as a nonnegative or a nonpositive linear combination
of the basis. Since (a) is clear, we show (b). Consider 𝛼 = 𝜖𝑖 − 𝜖 𝑗 with 𝑖 ≥ 𝑗 . Then, 𝛼 = (𝜖𝑖 − 𝜖𝑖−1) +
(𝜖𝑖−1 − 𝜖𝑖−2) + · · · + (𝜖 𝑗+1 − 𝜖 𝑗 ), as desired. Proceed similarly if 𝑖 ≤ 𝑗 . ■

Hereafter, we let 𝛼𝑖 = 𝜖𝑖+1 − 𝜖𝑖 . The set of simple roots will be denoted by Δ(𝐴𝑛−1) or simply Δ,
when the root system is clear from context.

Our previous computations also give a system of Lie algebra generators compatible with the root
space decomposition. That is, we find 𝔰𝔩(𝑛) = 𝔫+ ⊕ 𝔥 ⊕ 𝔫−, with 𝔫+ generated by {𝑒𝛼 }𝛼 ∈Δ, 𝔥 spanned by
{ℎ𝛼 }𝛼 ∈Δ, and 𝔫− generated by {𝑓𝛼 }𝛼 ∈Δ, and with the additional properties that 𝑒𝛼 spans (𝔰𝔭(2𝑛))𝛼 and
[𝑒𝛼 , 𝑓𝛼 ] = ℎ𝛼 = 𝛼∨. Explicitly, these are given by

𝑒𝛼𝑖 = 𝐸𝑖,𝑖+1, ℎ𝛼𝑖 = 𝐸𝑖,𝑖 − 𝐸𝑖+1,𝑖+1, 𝑓𝛼𝑖 = 𝑒
t
𝛼𝑖

for 𝑖 = 1, ..., 𝑛 − 1.

By abuse of notation, we may write 𝑒𝑖 , ℎ𝑖 , 𝑓𝑖 instead of 𝑒𝛼𝑖 , ℎ𝛼𝑖 , 𝑓𝛼𝑖 .
Example 2.11. In 𝔰𝔩(3), we have

𝐴2 = 𝛼1

𝛼2 𝑒1 =

(
0 1
0
0

)
, 𝑒2 =

(
0
0 1
0

)
, ℎ1 =

(
1
−1

0

)
,

ℎ2 =

(
0
1
−1

)
, 𝑓1 =

(
0
1 0

0

)
, 𝑓2 =

(
0
0
1 0

)
.
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The fundamental weights𝜔𝑖 , 𝑖 = 1, ..., 𝑛−1, are defined by ⟨𝜔𝑖 , 𝛼∨𝑗 ⟩ = 𝛿𝑖 𝑗 . Writing𝜔𝑖 =
∑
𝑘<𝑛 𝑎𝑖,𝑘 (𝜖𝑘+1−

𝜖𝑘 ), we obtain

𝛿𝑖 𝑗 = ⟨𝜔𝑖 , 𝛼∨𝑗 ⟩ = ⟨
∑︁
𝑘<𝑛

𝑎𝑖,𝑘 (𝜖𝑘+1 − 𝜖𝑘 ), 𝐸 𝑗+1, 𝑗+1 − 𝐸 𝑗 𝑗 ⟩ = −𝑎𝑖, 𝑗−1 + 2𝑎𝑖, 𝑗 − 𝑎𝑖, 𝑗+1.

We conclude that 𝜔𝑖 =
∑𝑛
𝑘=𝑖+1 𝜖𝑘 .

Theorem 2.12. There are bijections{
highest weight f.d.
irreps. of 𝔰𝔩 (𝑛)

}
↔

{
dominant integral
weights of 𝔥𝔰𝔩 (𝑛)

}
↔

{
partitions

of length ≤𝑛−1

}
,

𝐿(_) ← � _ =
∑𝑛
𝑖=1 _𝑖𝜖𝑖 ↦→ (_𝑛−1, ..., _1) .

Proof. We know that 𝔰𝔩(𝑛) is a complex semisimple Lie algebra. This gives the first bijection [Str22].
To see the second bijection, consider _ =

∑𝑛−1
𝑖=1 _𝑖𝜖𝑖+1 =

∑𝑛−1
𝑖=1 _̃𝑖𝜔𝑖 (which we can assume, since 𝜖1 =

−∑𝑛
𝑖=2 𝜖𝑖 ). By definition, N ∋ ⟨_, 𝛼∨𝑖 ⟩ = _̃𝑖 . By the above formulas for 𝜔𝑖 , we then get

∑𝑛−1
𝑖=1 _𝑖𝜖𝑖+1 =∑𝑛−1

𝑖=1 _̃𝑖
∑𝑛
𝑘=𝑖+1 𝜖𝑘 . Therefore, _𝑖 = _̃1 + · · · + _̃𝑖 , and in particular, _𝑛−1 ≥ · · · ≥ _1. ■

The Cartan matrix of 𝔰𝔩(𝑛) is given by {⟨𝛼𝑖 , 𝛼∨𝑗 ⟩}𝑖 𝑗 = {−𝛿𝑖, 𝑗−1 + 2𝛿𝑖 𝑗 − 𝛿𝑖, 𝑗+1}𝑖 𝑗 . Its Dynkin diagram
is the following.

𝛼1 𝛼2
. . .
𝛼𝑛−2 𝛼𝑛−1

We conclude by explicitly describing how one may study the representation theory of 𝔤𝔩(𝑛) from
that of 𝔰𝔩(𝑛). Classical proofs of this next theorem typically require some development of Lie group
theory. We choose to omit this, and refer to [FH91] for details.

Theorem 2.13. Every highest weight finite dimensional irreducible representation of 𝔤𝔩(𝑛) is of the form

𝐿𝔤𝔩 (𝑛) (_𝑛, ..., _1) = 𝐿𝔰𝔩 (𝑛) (_𝑛 − _1, ..., _2 − _1) ⊗ _𝑛 · tr,

with _𝑛 ≥ · · · ≥ _1 (not necessarily nonnegative). ■

We say by convention that 𝔤𝔩(𝑛) has the same root system as 𝔰𝔩(𝑛). But the Cartan subalgebra 𝔥𝔤𝔩 (𝑛)
of 𝔤𝔩(𝑛) is one dimension larger than that of 𝔰𝔩(𝑛); it is spanned by {𝜖𝑖 }1≤𝑖≤𝑛 , and the fundamental
weights are 𝜔𝑖 =

∑𝑛
𝑘=𝑖+1 𝜖𝑘 for 𝑖 = 0, ..., 𝑛 − 1.

The even symplectic Lie algebras

A basis of 𝔰𝔭(2𝑛) is given by the matrices 𝐸𝑖 𝑗 + (−1)𝛿 (𝑖≤𝑛)𝐸 t⃝
𝑖 𝑗

for 𝑖 ≤ 2𝑛 − 𝑗 and the matrices 𝐸𝑖,2𝑛+1−𝑖
for 𝑖 = 1, ..., 2𝑛. Therefore, 𝔰𝔭(2𝑛) has dimension 1

22𝑛(2𝑛 − 1) + 2𝑛 = 2𝑛2 + 𝑛.

Lemma 2.14. A Cartan subalgebra 𝔥𝔰𝔭 (2𝑛) of 𝔰𝔭(2𝑛) is given by the span of {𝐸𝑖𝑖 − 𝐸 t⃝
𝑖𝑖
}𝑖≤𝑛 .

Proof. Analogous to the proof of Lemma 2.8 for type A. ■

The dual space 𝔥∗
𝔰𝔭 (2𝑛) has a basis given by 𝜖𝑖 : 𝐸 𝑗 𝑗 − 𝐸 t⃝

𝑗 𝑗
↦→ 𝛿𝑖 𝑗 , for 𝑖, 𝑗 = 1, ..., 𝑛. Suppose (𝔰𝔭(2𝑛))𝛼

is a root space, and let 𝑥 ∈ (𝔰𝔭(2𝑛))𝛼 . We have [ℎ, 𝑥] = 𝛼 (ℎ)𝑥 for all ℎ ∈ 𝔥𝔰𝔭 (2𝑛) , with 𝛼 =
∑
𝑎𝑖𝜖𝑖 . That

is, ℎ𝑥 − 𝑥ℎ = (∑𝑎𝑘ℎ𝑘𝑘 ) 𝑥 . In particular, (ℎ𝑖𝑖 − ℎ 𝑗 𝑗 )𝑥𝑖 𝑗 = (∑𝑎𝑘ℎ𝑘𝑘 ) 𝑥𝑖 𝑗 for all ℎ, 𝑖, 𝑗 . This means that
𝑥𝑖, 𝑗 = 0 = 𝑥2𝑛+1−𝑖,2𝑛+1−𝑗 for all except one (𝑖, 𝑗) pair, and that 𝛼 = ±𝜖𝑖 ± 𝜖 𝑗 . Again, because these are 2𝑛2
elements and since dim(𝔰𝔭(2𝑛)) − dim(𝔥𝔰𝔭 (2𝑛) ) = 2𝑛2, we get that these are all roots. We have shown
the following theorem.
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Theorem 2.15. The root system of 𝔰𝔭(2𝑛) has 2𝑛2 roots. As a set, it is given by {±2𝜖𝑖 }𝑖≤𝑛 ⊔ {±𝜖𝑖 ±
𝜖 𝑗 }𝑖< 𝑗≤𝑛 . ■

The abstract root system formed by these is called 𝐶𝑛 .

Theorem 2.16. The root system 𝐶𝑛 has rank 𝑛. In 𝔰𝔭(2𝑛), a basis is {2𝜖1} ⊔ {𝜖𝑖+1 − 𝜖𝑖 }𝑖<𝑛 .

Proof. The first statement follows from dim(𝔥𝔰𝔭 (2𝑛) ) = 𝑛. For the second one, we mostly proceed as in
Theorem 2.10 for type A. To express ±2𝜖𝑖 in terms of the basis, one may write ±2𝜖𝑖 = ∓2𝜖1 ∓ 2(𝜖2 −
𝜖1) ∓ · · · ∓ 2(𝜖𝑖+1 − 𝜖𝑖 ). ■

Hereafter, we will denote the simple roots by 𝛼0 := 2𝜖1 and 𝛼𝑖 := 𝜖𝑖+1 − 𝜖𝑖 for 𝑖 = 1, ..., 𝑛 − 1. The set
of simple roots will be denoted by Δ(𝐶𝑛) or simply Δ, when the root system is clear from context.

Again, our previous computations also give a system of Lie algebra generators compatible with the
root space decomposition. Explicitly, these are given by

𝑒𝛼𝑖 = 𝐸𝑖+1,𝑖 − 𝐸 t⃝
𝑖+1,𝑖 , ℎ𝛼𝑖 = 𝐸𝑖+1,𝑖+1 − 𝐸𝑖𝑖 + 𝐸 t⃝

𝑖𝑖
− 𝐸 t⃝

𝑖+1,𝑖+1, 𝑓𝛼𝑖 = 𝑒
t
𝛼𝑖

for 𝑖 = 1, ..., 𝑛 − 1,
𝑒𝛼0

= 𝐸1,2𝑛, ℎ𝛼0
= 𝐸11 − 𝐸 t⃝

11, 𝑓𝛼0
= 𝑒 t𝛼0

.

By abuse of notation, we may write 𝑒𝑖 , ℎ𝑖 , 𝑓𝑖 instead of 𝑒𝛼𝑖 , ℎ𝛼𝑖 , 𝑓𝛼𝑖 .

Example 2.17. In 𝔰𝔭(4), we have

𝐶2 = 𝛼0

𝛼1
𝑒0 =

(
1

0
0

0

)
, 𝑒1 =

(
0
1 0

0
−1 0

)
, ℎ0 =

(
1
0
0
−1

)
,

ℎ1 =

(
1
−1

1
−1

)
, 𝑓0 =

(
0

0
0

1

)
, 𝑓1 =

(
0 1
0
0 −1

0

)
.

We can also compute the fundamental weights. We have

⟨𝜔 𝑗 , 𝛼∨𝑖 ⟩ = 𝛿𝑖 𝑗 = ⟨𝜔 𝑗 , 𝐸𝑖+1,𝑖+1 − 𝐸𝑖𝑖 + 𝐸 t⃝
𝑖𝑖
− 𝐸 t⃝

𝑖+1,𝑖+1⟩,

which implies 𝜔𝑖 =
∑𝑛
𝑘=𝑖+1 𝜖𝑘 for 𝑖 = 0, ..., 𝑛 − 1.

Theorem 2.18. There are bijections{
highest weight f.d.
irreps. of 𝔰𝔭 (2𝑛)

}
↔

{
dominant integral
weights of 𝔥𝔰𝔭 (2𝑛)

}
↔

{
partitions

of length ≤𝑛

}
,

𝐿(_) ← � _ =
∑
_𝑖𝜖𝑖 ↦→ (_𝑛, ..., _1).

Proof. We know that 𝔰𝔭(2𝑛) is a complex semisimple Lie algebra. This gives the first bijection [Str22].
To see the second bijection, we consider _ =

∑𝑛
𝑖=1 _𝑖𝜖𝑖 =

∑𝑛−1
𝑖=0 _̃𝑖𝜔𝑖 . By definition, N ∋ ⟨_, 𝛼∨𝑖 ⟩ = _̃𝑖 . By

the above formulas for 𝜔𝑖 , we then get
∑𝑛
𝑖=1 _𝑖𝜖𝑖 =

∑𝑛−1
𝑖=0 _̃𝑖

∑𝑛
𝑘=𝑖+1 𝜖𝑘 , and thus _𝑖 = _̃0 + · · · + _̃𝑖−1 ∈ N.

In particular, _𝑛 ≥ · · · ≥ _0. ■

In the next section, we will study the Weyl group of 𝐶𝑛 . To prepare this discussion, we need the
Cartan matrix of 𝔰𝔭(2𝑛). Since we have explicit descriptions of all simple roots and coroots, we can
simply compute. For 𝑖, 𝑗 = 1, ..., 𝑛 − 1, we have

⟨𝛼𝑖 , 𝛼∨𝑗 ⟩ = ⟨𝜖𝑖+1 − 𝜖𝑖 , 𝐸 𝑗+1, 𝑗+1 − 𝐸 𝑗 𝑗 + 𝐸 t⃝
𝑗 𝑗
− 𝐸 t⃝

𝑗+1, 𝑗+1⟩ = −𝛿𝑖, 𝑗+1 − 𝛿𝑖+1, 𝑗 .

When either 𝑖 or 𝑗 are equal to 0, similar computations give ⟨𝛼0, 𝛼∨𝑗 ⟩ = −2𝛿1, 𝑗 , ⟨𝛼𝑖 , 𝛼∨0 ⟩ = −𝛿𝑖,1, and of
course, ⟨𝛼0, 𝛼∨0 ⟩ = 2.
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Example 2.19. For instance, for 𝑛 = 4, we have the following Cartan matrix:

©«
2 −2 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

ª®®®®®¬
In other words, the Dynkin diagram of𝑊 (𝐶𝑛) is the following.

𝛼0 𝛼1 𝛼2
. . .
𝛼𝑛−2 𝛼𝑛−1

The odd orthogonal Lie algebras

Let 𝑁 = 2𝑛 + 1. A basis of 𝔰𝔬(𝑁 ) is given by the matrices {𝐸𝑖 𝑗 − 𝐸 t⃝
𝑖 𝑗

: 𝑖 ≤ 𝑁 − 𝑗}, and thus 𝔰𝔬(𝑁 ) has
dimension 1

2𝑁 (𝑁 − 1) = 2𝑛2 + 𝑛.

Lemma 2.20. A Cartan subalgebra 𝔥𝔰𝔬 (𝑁 ) is given by span{𝐸𝑖𝑖 − 𝐸 t⃝
𝑖𝑖
}𝑖≤𝑛 .

Proof. Analogous to the proof of Lemma 2.8 for type A. ■

In particular, note that ℎ𝑛+1,𝑛+1 = 0 for all matrices in 𝔥𝔰𝔬 (𝑁 ) .
The dual space 𝔥∗

𝔰𝔬 (𝑁 ) has a basis given by 𝜖𝑖 : 𝐸 𝑗 𝑗 − 𝐸 t⃝
𝑗 𝑗
↦→ 𝛿𝑖 𝑗 , for 𝑖, 𝑗 = 1, ..., 𝑛. Suppose (𝔰𝔬(𝑁 ))𝛼

is a root space, and let 𝑥 ∈ (𝔰𝔬(𝑁 ))𝛼 . We have [ℎ, 𝑥] = 𝛼 (ℎ)𝑥 for all ℎ ∈ 𝔥𝔰𝔬 (𝑁 ) , with 𝛼 =
∑
𝑎𝑖𝜖𝑖 . That

is, ℎ𝑥 − 𝑥ℎ = (∑𝑎𝑘ℎ𝑘𝑘 ) 𝑥 . In particular, (ℎ𝑖𝑖 − ℎ 𝑗 𝑗 )𝑥𝑖 𝑗 = (∑𝑎𝑘ℎ𝑘𝑘 ) 𝑥𝑖 𝑗 for all ℎ, 𝑖, 𝑗 . This means that
𝑥𝑖, 𝑗 = 0 = 𝑥𝑁+1−𝑖,𝑁+1−𝑗 for all except one (𝑖, 𝑗) pair, and that 𝛼 = ±𝜖𝑖 ± 𝜖 𝑗 . If 𝑗 = 𝑛 + 1, we also get
𝛼 = ±𝜖𝑖 . Since dim(𝔰𝔬(𝑁 )) − dim(𝔥𝔰𝔬 (𝑁 ) ) = 2𝑛2, all of these are indeed roots. We have shown the
following theorem.

Theorem 2.21. The root system of 𝔰𝔬(2𝑛 + 1) has 2𝑛2 roots and is given, as a set, by {±𝜖𝑖 }𝑖≤𝑛 ⊔ {±𝜖𝑖 ±
𝜖 𝑗 }𝑖< 𝑗≤𝑛 . ■

The abstract root system given by these is called 𝐵𝑛 .

Theorem 2.22. The root system 𝐵𝑛 has rank 𝑛. In 𝔰𝔬(2𝑛 + 1), a basis is {𝜖1} ⊔ {𝜖𝑖+1 − 𝜖𝑖 }𝑖<𝑛 .

Proof. We proceed as in Theorem 2.16. ■

Hereafter, we will denote the simple roots by 𝛼0 := 𝜖1 and 𝛼𝑖 := 𝜖𝑖+1 − 𝜖𝑖 for 𝑖 = 1, ..., 𝑛 − 1. The set
of simple roots will be denoted by Δ(𝐵𝑛) or simply Δ, when the root system is clear from context.

We can also compute the fundamental weights. We identify the 𝑖th coroot 𝛼∨𝑖 with 𝐸𝑖+1,𝑖+1 − 𝐸𝑖𝑖 +
𝐸 t⃝
𝑖𝑖
− 𝐸 t⃝

𝑖+1,𝑖+1 for 𝑖 = 1, ..., 𝑛 − 1 and with 2𝐸11 − 2𝐸 t⃝
11 for 𝑖 = 0. We have ⟨𝜔 𝑗 , 𝛼∨𝑖 ⟩ = 𝛿𝑖 𝑗 , which implies

𝜔𝑖 =
∑𝑛
𝑘=𝑖+1 𝜖𝑘 for 𝑖 = 1, ..., 𝑛 − 1, and ⟨𝜔0, 𝛼

∨
𝑗 ⟩ = 𝛿0𝑗 implies 𝜔0 = 1

2

∑𝑛
𝑘=1 𝜖𝑘 .

Not every highest weight finite dimensional irreducible representations of 𝔰𝔬(2𝑛 + 1) is indexed by
a partition. We say (`1, ..., `𝑛) is a half-partition of length 𝑛 if `1 ≥ · · · ≥ `𝑛 and `𝑖 ∈ Z≥0 + 1

2 for all 𝑖 .

Theorem 2.23. There are bijections{
highest weight f.d.
irreps. of 𝔰𝔬 (2𝑛 + 1)

}
↔

{
dominant integral
weights of 𝔥𝔰𝔬 (2𝑛+1)

}
↔

{
partitions

of length ≤𝑛

}
∪

{
half-partitions
of length 𝑛

}
,

𝐿(_) ← � _ =
∑
_𝑖𝜖𝑖 ↦→ (_𝑛, ..., _1).
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Proof. We know that 𝔰𝔬(2𝑛+1) is a complex semisimple Lie algebra. This gives the first bijection [Str22].
To see the second bijection, we consider _ =

∑𝑛
𝑖=1 _𝑖𝜖𝑖 =

∑𝑛−1
𝑖=0 _̃𝑖𝜔𝑖 . By definition, N ∋ ⟨_, 𝛼∨𝑖 ⟩ = _̃𝑖 .

By the above formulas for 𝜔𝑖 , we then get
∑𝑛
𝑖=1 _𝑖𝜖𝑖 =

1
2 _̃0

∑𝑛
𝑖=1 𝜖𝑖 +

∑
𝑖≥1 _̃𝑖

∑
𝑘≥𝑖+1 𝜖𝑘 , and thus _𝑖 =

1
2 _̃0 + _̃1 + · · · + _̃𝑖−1 ∈ N +

1
2N. Moreover, _𝑛 ≥ · · · ≥ _1. ■

The Cartan matrix of 𝔰𝔬(2𝑛 + 1) is the transpose of the Cartan matrix of 𝔰𝔭(2𝑛). In other words, the
Dynkin diagram of𝑊 (𝐵𝑛) is the following.

𝛼0 𝛼1 𝛼2
. . .
𝛼𝑛−2 𝛼𝑛−1

The even orthogonal Lie algebras

Let 𝑁 = 2𝑛. A basis of 𝔰𝔬(𝑁 ) is given by the matrices {𝐸𝑖 𝑗 − 𝐸 t⃝
𝑖 𝑗

: 𝑖 ≤ 𝑁 − 𝑗}, and thus 𝔰𝔬(𝑁 ) has
dimension 1

2𝑁 (𝑁 − 1) = 2𝑛2 − 𝑛.

Lemma 2.24. A Cartan subalgebra 𝔥𝔰𝔬 (𝑁 ) is given by span{𝐸𝑖𝑖 − 𝐸 t⃝
𝑖𝑖
}𝑖≤𝑛 .

Proof. Analogous to the proof of Lemma 2.8 for type A. ■

The dual space 𝔥∗
𝔰𝔬 (𝑁 ) has a basis given by 𝜖𝑖 : 𝐸 𝑗 𝑗 − 𝐸 t⃝

𝑗 𝑗
↦→ 𝛿𝑖 𝑗 , for 𝑖, 𝑗 = 1, ..., 𝑛. Suppose (𝔰𝔬(𝑁 ))𝛼

is a root space, and let 𝑥 ∈ (𝔰𝔬(𝑁 ))𝛼 . We have [ℎ, 𝑥] = 𝛼 (ℎ)𝑥 for all ℎ ∈ 𝔥𝔰𝔬 (𝑁 ) , with 𝛼 =
∑
𝑎𝑖𝜖𝑖 . That is,

ℎ𝑥−𝑥ℎ = (∑𝑎𝑘ℎ𝑘𝑘 ) 𝑥 . In particular, (ℎ𝑖𝑖−ℎ 𝑗 𝑗 )𝑥𝑖 𝑗 = (
∑
𝑎𝑘ℎ𝑘𝑘 ) 𝑥𝑖 𝑗 for allℎ, 𝑖, 𝑗 . This means that 𝑥𝑖, 𝑗 = 0 =

𝑥𝑁+1−𝑖,𝑁+1−𝑗 for all except one (𝑖, 𝑗) pair, and that 𝛼 = ±𝜖𝑖 ± 𝜖 𝑗 . Since dim(𝔰𝔬(𝑁 )) −dim(𝔥𝔰𝔬 (𝑁 ) ) = 2𝑛2,
all of these are indeed roots. We have shown the following theorem.

Theorem2.25. The root system of 𝔰𝔬(2𝑛+1) has 2𝑛2−2𝑛 roots and is given, as a set, by {±𝜖𝑖±𝜖 𝑗 }𝑖< 𝑗≤𝑛 . ■

The abstract root system given by these is called 𝐷𝑛 .

Theorem 2.26. The root system 𝐷𝑛 has rank 𝑛. In 𝔰𝔬(2𝑛), a basis is {𝜖2 + 𝜖1} ⊔ {𝜖𝑖+1 − 𝜖𝑖 }𝑖<𝑛 .

Proof. We proceed as in Theorem 2.16. ■

Hereafter, we will denote the simple roots by 𝛼0 := 𝜖2 + 𝜖1 and 𝛼𝑖 := 𝜖𝑖+1 − 𝜖𝑖 for 𝑖 = 1, ..., 𝑛 − 1. The
set of simple roots will be denoted by Δ(𝐷𝑛) or simply Δ, when the root system is clear from context.

We can also compute the fundamental weights. Let 𝛼∨𝑖 be the 𝑖th coroot, which we can identify with
𝐸𝑖+1,𝑖+1−𝐸𝑖𝑖 +𝐸 t⃝

𝑖𝑖
−𝐸 t⃝

𝑖+1,𝑖+1 for 𝑖 = 1, ..., 𝑛−1, and with 𝐸22+𝐸11−𝐸 t⃝
11+𝐸

t⃝
22 for 𝑖 = 0. Then, ⟨𝜔 𝑗 , 𝛼∨𝑖 ⟩ = 𝛿𝑖 𝑗

implies 𝜔𝑖 =
∑𝑛
𝑘=𝑖+1 𝜖𝑘 for 𝑖 = 2, ..., 𝑛 − 1, whereas for 𝑖 = 0, 1 we get 𝜔0 = 1

2 (𝜖𝑛 + · · · + 𝜖2 + 𝜖1) and
𝜔1 = 1

2 (𝜖𝑛 + · · · + 𝜖2 − 𝜖1).
Again, not every highest weight finite dimensional irreducible representations of 𝔰𝔬(2𝑛 + 1) is in-

dexed by a partition. We need to introduce yet another object to index them: we say (`1, ..., `𝑛) is a
signed (half-)partition if (`1, ..., `𝑛−1, |`𝑛 |) is a (half-)partition. We let sgn(`) := sgn(`𝑛) be the sign of
`.

Theorem 2.27. There are bijections{
highest weight f.d.
irreps. of 𝔰𝔬 (2𝑛)

}
↔

{
dominant integral
weights of 𝔥𝔰𝔬 (2𝑛)

}
↔

{
signed partitions
of length ≤𝑛

}
∪

{
signed half-partitions

of length 𝑛

}
,

𝐿(_) ← � _ =
∑
_𝑖𝜖𝑖 ↦→ (_𝑛, ..., _1).
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Proof. We know that 𝔰𝔬(2𝑛) is a complex semisimple Lie algebra. This gives the first bijection [Str22].
To see the second bijection, we consider _ =

∑𝑛
𝑖=1 _𝑖𝜖𝑖 =

∑𝑛−1
𝑖=0 _̃𝑖𝜔𝑖 . By definition, N ∋ ⟨_, 𝛼∨𝑖 ⟩ = _̃𝑖 . By

the above formulas for 𝜔𝑖 , we then get
𝑛∑︁
𝑖=1

_𝑖𝜖𝑖 = _̃0
1

2
(𝜖𝑛 + · · · + 𝜖2 + 𝜖1) + _̃1

1

2
(𝜖𝑛 + · · · + 𝜖2 − 𝜖1) +

∑︁
𝑖≥2

_̃𝑖 (𝜖𝑛 + · · · + 𝜖𝑖+1).

Therefore, _1 = 1
2 (_̃0 − _̃1) ∈

1
2Z, _2 = 1

2 (_̃0 + _̃1) ∈
1
2N, and _𝑖 =

1
2 _̃0 +

1
2 _̃1 + _̃2 + · · · + _̃𝑖−1 ∈ N +

1
2N.

Moreover, _𝑛 ≥ · · · ≥ _2 ≥ |_1 | ≥ 0. Whether _̃0 and _̃1 are simultaneously odd determines if
(_𝑛, ..., _2, |_1 |) is a partition or a half-partition. ■

When computing the Cartan matrix of 𝔰𝔬(2𝑛), note that ⟨𝛼0, 𝛼∨1 ⟩ = 0. The Dynkin diagram of
𝑊 (𝐷𝑛) is the following.

𝛼0
𝛼1 𝛼2 𝛼3

. . .
𝛼𝑛−2 𝛼𝑛−1

2.2 The classical Weyl groups
Weyl groups are Coxeter groups that can therefore be described by Coxeter graphs. Simple Lie algebras
are classified by a refinement of the Coxeter graph; the Dynkin diagram (which is a mixed graph, with
directed and undirected edges, whose underlying undirected graph is a Coxeter graph). The Dynkin
diagrams of interest to us were computed in the last section, and are displayed in Table 2.1.

Type Dynkin diagram Lie algebra

𝐴𝑛−1 (𝑛 ≥ 2) . . . 𝔰𝔩(𝑛)

𝐵𝑛 (𝑛 ≥ 2) . . . 𝔰𝔬(2𝑛 + 1)

𝐶𝑛 (𝑛 ≥ 3) . . . 𝔰𝔭(2𝑛)

𝐷𝑛 (𝑛 ≥ 4) . . . 𝔰𝔬(2𝑛)

Table 2.1: Dynkin diagrams of types A, B, C, D.

The three Coxeter groups that we read off these diagrams are

𝑊 (𝐴𝑛−1) = ⟨𝑠1, ..., 𝑠𝑛−1 | 𝑠2𝑖 ∀𝑖, (𝑠𝑖𝑠𝑖+1)3 ∀𝑖 ≥ 1, (𝑠𝑖𝑠 𝑗 )2 ∀|𝑖 − 𝑗 | ≥ 2⟩,
𝑊 (𝐵𝑛) = ⟨𝑠0, ..., 𝑠𝑛−1 | 𝑠2𝑖 ∀𝑖, (𝑠𝑖𝑠𝑖+1)3 ∀𝑖 ≥ 1, (𝑠𝑖𝑠 𝑗 )2 ∀|𝑖 − 𝑗 | ≥ 2, (𝑠0𝑠1)4⟩,
𝑊 (𝐷𝑛) = ⟨𝑠0, ..., 𝑠𝑛−1 | 𝑠2𝑖 ∀𝑖, (𝑠𝑖𝑠𝑖+1)3 ∀𝑖 ≥ 1, (𝑠𝑖𝑠 𝑗 )2 ∀{𝑖, 𝑗} ≠ {0, 2}, |𝑖 − 𝑗 | ≥ 2, (𝑠0𝑠1)2, (𝑠0𝑠2)3⟩.

We have𝑊 (𝐶𝑛) = 𝑊 (𝐵𝑛). We also note that𝑊 (𝐴𝑛−1) is just S𝑛 . Similarly, it is sometimes more
useful to think of the Weyl group𝑊 (𝐵𝑛) in a different way (rather than by its presentation).

Definition-theorem 2.28. Let 𝐺 and 𝐻 be finite groups, which we see as permutation groups. That
is, there are numbers 𝑛 and 𝑘 and actions 𝐺 [𝑛] and 𝐻 [𝑘]. We define the wreath product 𝐺 ≀ 𝐻 of
𝐺 and 𝐻 as the group with underlying set 𝐺 × 𝐻𝑛 and multiplication given by

(𝑔;ℎ1, ..., ℎ𝑛) · (𝑔′;ℎ′1, ..., ℎ′𝑛) = (𝑔𝑔′;ℎ𝑔′.1ℎ′1, ..., ℎ𝑔′.𝑛ℎ′𝑛) .

It acts on [𝑛] × [𝑘] via (𝑔;ℎ1, ..., ℎ𝑛).(𝑖, 𝑗) = (𝑔.𝑖, ℎ𝑖 . 𝑗).
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Proof. It is a group: the identity element is (𝑒; 𝑒, ..., 𝑒), and the inverse of an element (𝑔;ℎ1, ..., ℎ𝑛) is
given by (𝑔−1;ℎ−1

𝑔−1 .1
, ..., ℎ−1

𝑔−1 .𝑛
). Indeed,

(𝑔;ℎ1, ..., ℎ𝑛) · (𝑔−1;ℎ−1𝑔−1 .1, ..., ℎ
−1
𝑔−1 .𝑛) = (𝑔𝑔

−1;ℎ𝑔−1 .1ℎ
−1
𝑔−1 .1, ..., ℎ𝑔−1 .𝑛ℎ

−1
𝑔−1 .𝑛) = (𝑒; 𝑒, ..., 𝑒)

and
(𝑔−1;ℎ−1

𝑔−1 .1, ..., ℎ
−1
𝑔−1 .𝑛) · (𝑔;ℎ1, ..., ℎ𝑛) = (𝑔

−1𝑔;ℎ−1
𝑔𝑔−1 .1ℎ1, ..., ℎ

−1
𝑔𝑔−1 .𝑛ℎ𝑛) = (𝑒; 𝑒, ..., 𝑒).

Finally, the action is well-defined;

(𝑔;ℎ1, ..., ℎ𝑛) · (𝑔′;ℎ′1, ..., ℎ′𝑛).(𝑖, 𝑗) = (𝑔;ℎ1, ..., ℎ𝑛).(𝑔′.𝑖, ℎ′𝑖 . 𝑗) = (𝑔𝑔′.𝑖, ℎ𝑔′.𝑖ℎ′𝑖 . 𝑗)
= (𝑔𝑔′;ℎ𝑔′.1ℎ′1, ..., ℎ𝑔′.𝑛ℎ′𝑛).(𝑖, 𝑗). ■

Example 2.29. We will mostly consider the wreath product of S𝑛 and Z2. We see Z2 as a permutation
group acting on [2], or on the set {+,−}. Therefore, the underlying set of S𝑛 ≀ Z2 is S𝑛 × (Z2)𝑛 , and the
action on [𝑛] × {+,−} is given by (𝜎; 𝜖1, ..., 𝜖𝑛) .(±𝑖) = ±𝜖𝑖 · 𝜎 (𝑖). We identify the group S𝑛 ≀ Z2 with
the group of automorphisms of the set of leaves of the tree in Figure 2.30. A generating set of S𝑛 ≀ Z2 is
{(1 1′)} ∪ {(𝑖 𝑖 + 1) (𝑖 ′ 𝑖 + 1′) : 𝑖 = 1, ..., 𝑛 − 1}.

. . .
1 1′ 2 2′ 𝑛 𝑛′

Figure 2.30: A tree whose leaves have automorphism group S𝑛 ≀ Z2.

Lemma 2.31. There is an isomorphism of groups𝑊 (𝐵𝑛) � S𝑛 ≀ Z2.

Proof. The map Ψ :𝑊 (𝐵𝑛) → S𝑛 ≀Z2 defined by 𝑠0 ↦→ (1 1′) and 𝑠𝑖 ↦→ (𝑖 𝑖 +1) (𝑖 ′ 𝑖 +1′) is a well-defined
surjective group homomorphism.

Moreover, one can show the following claim.
Claim. |𝑊 (𝐵𝑛)/𝑊 (𝐵𝑛−1) | ≤ 2𝑛.

Proof of claim. Consider the following 2𝑛 cosets:

[𝑒], [𝑠𝑛−1], [𝑠𝑛−2𝑠𝑛−1], [𝑠𝑛−3𝑠𝑛−2𝑠𝑛−1], ..., [(𝑠1 · · · 𝑠𝑛−2𝑠𝑛−1)],
[𝑠0 (𝑠1 · · · 𝑠𝑛−1)], [𝑠1𝑠0 (𝑠1 · · · 𝑠𝑛−1)], ..., [(𝑠𝑛−1 · · · 𝑠1)𝑠0 (𝑠1 · · · 𝑠𝑛−1)] .

Consider the product of a generator with one of these cosets. For the sake of clarity, we follow an exam-
ple, say 𝑠𝑖 [𝑠𝑛−2𝑠𝑛−1]. If 𝑖 = 𝑛 − 2, then this simplifies to the coset [𝑠𝑛−1]. If 𝑖 = 𝑛 − 3, then this becomes
the coset [𝑠𝑛−3𝑠𝑛−2𝑠𝑛−1]. Any other generator 𝑠𝑖 , 𝑖 = 0, ..., 𝑛−4 commutes with the representative of the
coset and gives [𝑠𝑛−2𝑠𝑛−1]. Finally, 𝑖 = 𝑛 − 1 also gives [𝑠𝑛−2𝑠𝑛−1] by the braid relations.

With this analysis, we get a diagram

[𝑒] 𝑠𝑛−1←−→ [𝑠𝑛−1]
𝑠𝑛−2←−→ [𝑠𝑛−2𝑠𝑛−1]

𝑠𝑛−3←−→ [𝑠𝑛−3𝑠𝑛−2𝑠𝑛−1]
𝑠𝑛−4←−→ · · · 𝑠1←→ [(𝑠1 · · · 𝑠𝑛−2𝑠𝑛−1)]

𝑠0←→ [𝑠0 (𝑠1 · · · 𝑠𝑛−1)]
𝑠1←→ [𝑠1𝑠0 (𝑠1 · · · 𝑠𝑛−1)]

𝑠2←→ · · · 𝑠𝑛−1←−→ [(𝑠𝑛−1 · · · 𝑠1)𝑠0 (𝑠1 · · · 𝑠𝑛−1)]

in which the trivial action of generators were ignored. This shows that there are at most 2𝑛 cosets in
the quotient and that they are among the cosets above. □

By induction, 2𝑛𝑛! ≥ |𝑊 (𝐵𝑛) | ≥ |S𝑛 ≀ Z2 | = 2𝑛𝑛!. This shows that Ψ is an isomorphism. ■
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We may represent a permutation 𝜎 ∈ S𝑛 diagrammatically as a collection of 𝑛 strands going from 𝑖

to 𝜎 (𝑖), respectively, for 𝑖 = 1, ..., 𝑛. For instance, see the right diagram in Figure 2.33.
Another way of looking at the Weyl group of type B is through colored or decorated permutations.

A 2-colored permutation of [𝑛] is a pair 𝑓 = 𝑓𝜎 = (𝜎,𝐶) where 𝜎 is a permutation 𝜎 ∈ S𝑛 and 𝐶 is a
sequence of colors; a subset of {+,−}𝑛 . We say 𝑓𝜎 lifts 𝜎 . Diagramatically, we represent these colored
permutations by attaching a dot to the negative strands. (Diagrams are composed as usual; two dots in
the same strand cancel each other.)

Example 2.32. The colored permutation 𝑓 =
(
1 2 3 4
2 3′ 1′ 4

)
lifts 𝜎 =

(
1 2 3 4
2 3 1 4

)
. See Figure 2.33.

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

Figure 2.33: The colored permutation 𝑓 (on the left) lifts the permutation 𝜎 (on the right).

Lemma 2.34. The set of 2-colored permutations forms a group.

Proof. We identify {+,−} with Z2 and {+,−}𝑛 with Z𝑛2 . We can then multiply 2-color permutations via
(𝜎,𝐶) · (𝜏, 𝐷) = (𝜎𝜏,𝐶𝐷). The identity is (𝑒, (+, ..., +)) and the inverse is given by (𝜎−1,−𝐶). ■

Corollary 2.35. 𝑊 (𝐵𝑛) is isomorphic to the group of 2-colored permutations on 𝑛 letters. ■

A signed permutation on 𝑛 letters is a permutation 𝜎 of {+,−} × [𝑛] = {−𝑛, ...,−1} ∪ {1, ..., 𝑛} such
that 𝜎 (−𝑖) = −𝜎 (𝑖).

Corollary 2.36. 𝑊 (𝐵𝑛) is isomorphic to the group of signed permutations on 𝑛 letters.

Proof. Signed permutations form a group as a subgroup of S2𝑛 . We construct an isomorphism from 2-
colored permutations to signed permutations by letting the color indicate whether 𝜎 (𝑖) is in {−𝑛, ...,−1}
or {1, ..., 𝑛} for each 𝑖 ≥ 1. See Figure 2.37 ■

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

−4

−4

−3

−3

−2

−2

−1

−1

1

1

1′

1′

2

2

2′

2′

3

3

3′

3′

4

4

4′

4′

Figure 2.37: The signed permutation on the center corresponds unequivocally to the colored permuta-
tion on the left and the element of S𝑛 ≀ Z2 on the right.



Part II

Symmetric polynomials in types A,
B, and C
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Symmetric polynomials arise naturally in representation theory in a few different ways. Showing
that the definitions agree is nontrivial. This will be the content of this chapter. More precisely, we
will define symmetric polynomials in three ways: Lie theoretically (1), combinatorially (2), and as a
specialization of symmetric functions of type A (3). Purely algebraic proofs of the equivalence between
(1) and (3) are extracted from the literature [KT87, FH91]. To show that (2) and (3) agree, we follow
[Oka89, SV16, FK97], where lattice path arguments were developed. Finally, to show the equivalence
between (1) and (2), we appeal to crystal theory [KN94, HK02].



Chapter 3

The Lie theoretic definition

Fix a complex semisimple Lie algebra 𝔤 with Cartan subalgebra 𝔥, root system Φ, and a basis Δ of the
root system. Consider the integral weight lattice 𝑋 = {_ ∈ 𝔥∗ : ⟨_, 𝛼∨⟩ ∈ Z for all 𝛼 ∈ Δ}. We consider
the group ring C[𝑋 ] of 𝑋 over C. It is defined as the complex vector space with basis {𝑥_ : _ ∈ 𝑋 }. It
becomes a ring letting 𝑥_𝑥` = 𝑥_+` . The Weyl group𝑊 acts on C[𝑋 ] by letting 𝜎.𝑥_ = 𝑥𝜎 (_) for 𝜎 ∈𝑊
and _ ∈ 𝔥∗.

Given a finite dimensional representation 𝑉 of 𝔤, we define the character of 𝑉 as the dimension-
generating function of its weight spaces. Explicitly, ch𝑉 =

∑
_∈𝔥∗ (dim𝑉_)𝑥_ ∈ C[𝑋 ] . Recall the follow-

ing theorem [Hum72, FH91, Str22].

Theorem 3.1 (Weyl’s character formula). Let 𝐿(_) be an irreducible finite-dimensional representation
of a complex semisimple Lie algebra 𝔤. Fix a Cartan subalgebra 𝔥 of 𝔤. Fix a root system Φ with basis Δ.
Let𝑊 be the associated Weyl group. Let 𝜌 be the half-sum of positive roots. Then,

ch(𝐿(_)) =
∑
𝜎 ∈𝑊 (−1)𝑙 (𝜎) 𝜎.𝑥_+𝜌∑
𝜎 ∈𝑊 (−1)𝑙 (𝜎) 𝜎.𝑥𝜌

as elements of the field of fractions of the group ring C[𝑋 ]. ■

With this, we can compute the irreducible characters for types A, B, C, and D [FH91]. Let 𝐿(_) be
a finite dimensional highest weight irreducible representation of 𝔰𝔩(𝑛), 𝔰𝔬(2𝑛 + 1), 𝔰𝔭(2𝑛), or 𝔰𝔬(2𝑛),
respectively. Let 𝑥𝑖 := 𝑥𝜖𝑖 for 𝑖 = 1, ..., 𝑛. The character of 𝐿(_) is

(A). 𝜒𝔰𝔩 (𝑛)
_
(𝑥1, ..., 𝑥𝑛) =

det(𝑥_𝑖+𝑛−𝑖
𝑗

)𝑖 𝑗
det(𝑥𝑛−𝑖

𝑗
)𝑖 𝑗
∈ C[𝑥1, ..., 𝑥𝑛]S𝑛 ,

(B). 𝜒𝔰𝔬 (2𝑛+1)
_

(𝑥1, ..., 𝑥𝑛) =
det(𝑥_𝑖+𝑛−𝑖+1/2

𝑗
−𝑥−(_𝑖+𝑛−𝑖+1/2)

𝑗
)𝑖 𝑗

det(𝑥𝑛−𝑖+1/2
𝑗

−𝑥−(𝑛−𝑖+1/2)
𝑗

)𝑖 𝑗
∈ C(𝑥1/21 , ..., 𝑥

1/2
𝑛 )𝑊 (𝐵𝑛) ,

(C). 𝜒𝔰𝔭 (2𝑛)
_

(𝑥1, ..., 𝑥𝑛) =
det(𝑥_𝑖+𝑛−𝑖+1

𝑗
−𝑥−(_𝑖+𝑛−𝑖+1)

𝑗
)𝑖 𝑗

det(𝑥𝑛−𝑖+1
𝑗

−𝑥−(𝑛−𝑖+1)
𝑗

)𝑖 𝑗
∈ C(𝑥1, ..., 𝑥𝑛)𝑊 (𝐶𝑛) , or

(D). 𝜒𝔰𝔬 (2𝑛)
_

(𝑥1, ..., 𝑥𝑛) =
det(𝑥_𝑖+𝑛−𝑖

𝑗
+𝑥−(_𝑖+𝑛−𝑖 )

𝑗
)𝑖 𝑗−det(𝑥_𝑖+𝑛−𝑖𝑗

−𝑥−(_𝑖+𝑛−𝑖 )
𝑗

)𝑖 𝑗
det(𝑥𝑛−𝑖

𝑗
+𝑥−(𝑛−𝑖 )

𝑗
)𝑖 𝑗

∈ C(𝑥1, ..., 𝑥𝑛)𝑊 (𝐷𝑛) .

We refer to these characters as symmetric polynomials of types A, B, C, and D, respectively, and
they constitute the main object of study in this work. Note that they are not polynomials in the usual
sense of the word (except for symmetric polynomials of type A, although this is not clear from the above
formula).

21
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Proposition 3.2. The symmetric polynomial 𝜒𝔰𝔩 (𝑛)
_

is a polynomial in 𝑛 variables.

For the purposes of this proof, we introduce the concept of skew-symmetry: a polynomial 𝑝 (𝑥1, ..., 𝑥𝑛)
is skew-symmetric if 𝜎.𝑝 (𝑥1, ..., 𝑥𝑛) = sgn(𝜎)𝑝 (𝑥1, ..., 𝑥𝑛) for any permutation 𝜎 ∈ S𝑛 . Note that the nu-
merator and denominator of 𝜒𝔰𝔩 (𝑛)

_
are skew-symmetric, since the action of S𝑛 can be thought of as

permuting the rows of the matrix prior to taking the determinant. Finally, we may refer to the matrix
(𝑥𝑛−𝑖𝑗 )𝑖 𝑗 in the denominator as the Vandermonde matrix.

Proof. The proof is broken up into two claims, following [Sam17].
Claim 1. The determinant of (𝑥𝑛−𝑖𝑗 )𝑖 𝑗 is the Vandermonde polynomial,

Δ(𝑥1, ..., 𝑥𝑛) :=
∏

1≤𝑖< 𝑗≤𝑛
(𝑥𝑖 − 𝑥 𝑗 ).

Claim 2. The Vandermonde polynomial Δ(𝑥1, ..., 𝑥𝑛) divides every skew-symmetric polynomial in 𝑛
variables.

The statement now follows.

Proof of Claim 2. Let 𝜎 = (𝑖 𝑗) be a transposition, let 𝑓 be a skew-symmetric polynomial. Then 𝜎.𝑓 = −𝑓
by skew-symmetry. On the other hand, if 𝑥𝑖 = 𝑥 𝑗 , then 𝜎.𝑓 and 𝑓 agree. This means 𝑓 vanishes when
𝑥𝑖 = 𝑥 𝑗 , or that (𝑥𝑖 −𝑥 𝑗 ) divides 𝑓 . Since this is true for every transposition, we get that Δ divides 𝑓 . □

Proof of Claim 1. The Vandermonde polynomial divides the determinant of the Vandermonde matrix by
Claim 2. But since they are both polynomials of same degree (namely,

(
𝑛
2

)
) and since they agree on at least

one coefficient (the coefficient of 𝑥𝑛−11 𝑥𝑛−22 · · · 𝑥𝑛−1 for both is 1) they are the same polynomial. □■



Chapter 4

The combinatorial definition

Symmetric polynomials of type A are related to very rich combinatorial objects called tableaux. In
this chapter, we define these objects and explore some analogues for types B and C. In these cases,
there are several combinatorial models which are “natural” to consider, depending on the properties
that one wants to study. We present here one of these models for type C, originally introduced in
[Kin76], and then discuss its relation to some other models in Chapter 8. We only treat one model for
type B in this work, introduced in [Sun90]. For other type B combinatorial models, see for instance
[Pro94, She99, BZ22].

Let [_] be the set of cells of a partition _ = (_1, ..., _𝑙 ), defined as {(𝑖, 𝑗) ∈ Z2>0 : 𝑗 ≤ _𝑖 }. For instance,[ ]
= {(1, 1), (1, 2), (2, 1), (3, 1)}.

We will sometimes identify _ and [_].
Let X be a countable set. A tableau of shape _ in the alphabet X is a function𝑇 : [_] → X from the

set of cells of _ toX. (For [`] ⊆ [_], we let a skew-tableau of shape _/` be a function𝑇 : [_]− [`] → X.)
If X is a totally ordered set, we say a (skew-)tableau is semistandard if 𝑇 (𝑖, 𝑗) < 𝑇 (𝑖 + 1, 𝑗) and

𝑇 (𝑖, 𝑗) ≤ 𝑇 (𝑖, 𝑗 + 1) for all 𝑖, 𝑗 . A semistandard (skew-)tableau is standard (on 𝑛 letters) if the alphabet is
X = {1 < 2 < · · · < 𝑛} and 𝑇 is bijective.

Definition 4.1. Let _ be a partition. Let A := {1 < 1′ < 2 < 2′ < · · · < 𝑛 < 𝑛′}, and A∞ := {1 < 1′ <
2 < 2′ < · · · < 𝑛 < 𝑛′ < ∞} be two ordered sets.

(A) A semistandard Young tableaux (on 𝑛 letters) of shape _ is a semistandard tableau of shape _
in the alphabet X = {1 < 2 < · · · < 𝑛}. We let SSYT𝑛 (_) be the set of such tableaux.

(B) A (Sundaram) orthogonal tableau𝑇 (on 𝑛 letters) of shape _ is a semistandard tableau of shape
_ in the alphabet A∞ such that

– the co-restriction1 of 𝑇 to A defines a symplectic tableau (see below), and
– there is at most one∞ per row; that is, if 𝑇 (𝑖, 𝑗) = ∞, then 𝑇 (𝑖, 𝑘) ≠ ∞ for all 𝑘 ≠ 𝑗 .

We let SOT𝑛 (_) be the set of such tableaux.

(C) A (King) symplectic tableau 𝑇 (on 𝑛 letters) of shape _ is a semistandard tableau of shape _
in the alphabet A such that 𝑇 (𝑖, 𝑗) ≥ 𝑖 for all (𝑖, 𝑗) ∈ [_]. We let KSpT𝑛 (_) be the set of such
tableaux.

1The co-restriction of a map 𝑓 : 𝐴→ 𝐵 to a subset𝐶 ⊂ 𝐵 is defined to be the restriction of 𝑓 to 𝑓 −1 (𝐶) .

23
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The weight of a tableau 𝑇 : [_] → X is the monomial 𝑥𝑇 =
∏
𝑎∈X 𝑥𝑇 −1 (𝑎) ∈ C[𝑥𝑖 : 𝑖 ∈ X] . For the

alphabets in the above definition, we take the conventions 𝑥𝑖′ = 𝑥−1𝑖 and 𝑥∞ = 1. That is, the weights of
semistandard Young tableaux are polynomials in C[𝑥1, ..., 𝑥𝑛], whereas the weights of orthogonal and
symplectic tableaux live in

C[𝑥1, 𝑥1′, ..., 𝑥𝑛, 𝑥𝑛′, 𝑥∞]⧸⟨𝑥1𝑥1′ − 1, ..., 𝑥𝑛𝑥𝑛′ − 1, 𝑥∞ − 1⟩ = C[𝑥±1 , ..., 𝑥±𝑛 ] .

Example 4.2. Here are a semistandard Young tableau, an orthogonal tableau, and a symplectic tableau of
shape (32, 2). Below, their weights.

1 1 3

2 3 4

3 4

1 2 ∞
3 3 ∞
3′ 3′

1 2 2′

3 3 3′

3′ 3′

𝑥21𝑥2𝑥
3
3𝑥

2
4 𝑥1𝑥2 𝑥1𝑥

−1
3

Definition 4.3. The Schur polynomial 𝑠_ , the orthogonal polynomial 𝑜_ , and the symplectic
polynomial 𝑠𝑝_ on 𝑛 letters and of shape _ are defined as the power series

∑
𝑥𝑇 , where the sums

range over semistandard Young tableaux, orthogonal tableaux, and symplectic tableaux on 𝑛 letters of
shape _, respectively. Explicitly,

𝑠_ (𝑥1, ..., 𝑥𝑛) =
∑︁

𝑇 ∈SSYT𝑛 (_)
𝑥𝑇 , 𝑜_ (𝑥1, ..., 𝑥𝑛) =

∑︁
𝑇 ∈SOT𝑛 (_)

𝑥𝑇 , and 𝑠𝑝_ (𝑥1, ..., 𝑥𝑛) =
∑︁

𝑇 ∈KSpT𝑛 (_)
𝑥𝑇 .

Note 4.4. The above combinatorics for type B will only model the characters of spinless irreducible rep-
resentations (those indexed by partitions, rather than half-partitions). A richer combinatorial model arises
from crystal theory [KN94, HK02, BS17].

Note 4.5. The definition of orthogonal tableaux gives a bijective map SOT𝑛 (_) →
⋃
` KSpT𝑛 (`) where

` ranges over the partitions which may be formed from [_] by removing some cells, at most one per row.
Explicitly, the map is given by co-restriction to the alphabetA. There is also an injective map KSpT𝑛 (_) →
SSYT2𝑛 (_) given by post-composition with the order-preserving map A → [2𝑛]. Altogether, these give
an injective map SOT𝑛 (_) →

⋃
` SSYT2𝑛 (`), with ` as above.

Immediately from Proposition 1.11, we get the following result.

Proposition 4.6. If _ = (𝑘) is a row partition (a partition of length 1), then 𝑠_ = ℎ_ = ℎ𝑘 ; if _ = (1𝑘 ) is a
column partition (the transpose of a row partition), then 𝑠_ = 𝑒_′ = 𝑒𝑘 . ■

Analogously, we have the following result.

Proposition 4.7. If _ = (𝑘) is a row partition, then

1. 𝑠𝑝_ (𝑥1, ..., 𝑥𝑛) = ℎ𝑘 (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 ), and

2. 𝑜_ (𝑥1, ..., 𝑥𝑛) = ℎ𝑘 (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 ) + ℎ𝑘−1 (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 ). ■

It is not obvious from the definitions, however, that these (Laurent) polynomials are symmetric for
any _. The next classical proof gives well-definedness (for type A).

Proposition 4.8. Schur polynomials on 𝑛 letters are𝑊 (𝐴𝑛−1)-symmetric.

Proof. We present a classical proof due to Bender and Knuth [BK72].
Fix a partition _. Recall that𝑊 (𝐴𝑛−1) � S𝑛 . Therefore, it is enough to check that the set {𝑥𝑇 : 𝑇 ∈

SSYT𝑛 (_)} of semistandard Young tableaux in 𝑛 letters is invariant by any simple transposition (𝑖 𝑖 +1),
𝑖 = 1, ..., 𝑛 − 1. Moreover, it is enough to show that the action of a given transposition 𝑠𝑖 can be lifted
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to an involutive action on SSYT𝑛 (_). The existence of such an involution shows, in particular, that the
subset {𝑇 : 𝑥𝑇 = 𝑥𝛼 } has the same cardinality as the subset {𝑇 : 𝑥𝑇 = 𝑠𝑖 .𝑥

𝛼 } for each given weight
𝑥𝛼 , as desired.

Fix an integer 𝑖 ∈ [𝑛 − 1]. Given a (semistandard Young) tableau 𝑇 , we want to produce a new
tableau 𝑃 with𝑚𝑖 (𝑇 ) = 𝑚𝑖+1 (𝑃) and𝑚𝑖+1 (𝑇 ) = 𝑚𝑖 (𝑃), and with𝑚 𝑗 (𝑇 ) = 𝑚 𝑗 (𝑃) for every 𝑗 ≠ 𝑖, 𝑖 + 1.
Consider the (skew-)subtableau 𝑇 −1 ({𝑖, 𝑖 + 1}). See Figure 4.9 for an example.

3 3 3 3 4 4 4

3 3 4 4 4 4

3 3 3 4

Figure 4.9: Let 𝑖 = 3. This is 𝑇 −1 ({3, 4}) of a tableau 𝑇 . Highlighted, mutable entries.

We say an entry is frozen if it belongs to an {𝑖, 𝑖 +1}-vertical domino. Call every other entrymutable.
In Figure 4.9, mutable entries were highlighted. In a given row, mutable entries form a word 𝑖𝑎 (𝑖 + 1)𝑏 .
We construct 𝑇 ′ from 𝑇 by changing each of these words for 𝑖𝑏 (𝑖 + 1)𝑎 . See Figure 4.10.

1 1 1 1 2 2 3 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

↦→
1 1 1 1 2 2 3 3 3 3 3 3 4

2 2 2 3 3 4 4 4 4

4 4 4 4

Figure 4.10: In each row, we change the mutable word 3𝑎4𝑏 for 3𝑏4𝑎 .

This is clearly well-defined and an involution. In particular, it defines a bijection between the set of
semistandard Young tableaux with weight 𝑥𝛼 and weight (𝑖 𝑖 + 1).𝑥𝛼 for each 𝛼 , as desired. ■

The map defined in the above proof is referred to as the 𝑖th (type A) Bender–Knuth involution. We
denote it by 𝐵𝐾A

𝑖 .

Note 4.11. Type A Bender–Knuth involutions do not verify braid relations. That is, they do not induce an
action of S𝑛 on the set SSYT𝑛 (_) of semistandard Young tableaux of shape _ on 𝑛 letters. For instance,

𝐵𝐾A
1 𝐵𝐾

A
2 𝐵𝐾

A
1

1 2 3

2 3
=

1 1 2

2 3
≠

1 1 3

2 2
= 𝐵𝐾A

2 𝐵𝐾
A
1 𝐵𝐾

A
2

1 2 3

2 3
.

Onemay define an S𝑛 action on SSYT𝑛 (_) using crystal operators. Indeed, a crystal basis for the irreducible
representation 𝐿(_) of 𝔰𝔩(𝑛) may be identified with SSYT𝑛 (_) (see Theorem 9.1, or [KN94, HK02]). Then,
suitable compositions of crystal operators induce an action of the Weyl group on the crystal basis.

The action of each generator 𝑠𝑖 is usually referred to as a crystal reflection or a Lascoux–Schützenberger
involution. A combinatorial description of these reflections provides an alternative proof ofwell-definedness.

Before showing well-definedness for types B and C, we analyze these involutions from another
perspective.



Chapter 5

Pattern combinatorics

A very intimately related notion to tableaux is that of Gelfand–Tsetlin patterns (or GT patterns) [GT50,
Sta99].

Definition 5.1. A Gelfand–Tsetlin pattern 𝑥 is a triangular tuple of non-negative integers, 𝑥 =

(𝑥 (𝑛) , ..., 𝑥 (1) ) with 𝑥 (𝑘) = (𝑥1𝑘 , ..., 𝑥𝑘𝑘 ) for 𝑘 ∈ [𝑛], subject to the local inequalities of Figure 5.2,
whenever these make sense. (If represented as a triangular array as in Figure 5.2, the local inequali-
ties express that the pattern must be weakly decreasing along SW-NE diagonals and NW-SE diagonals.)
We say 𝑥 (𝑛) , ..., 𝑥 (1) are the rows of 𝑥 . Note that each row is a partition. We call 𝑥 (𝑛) the top row of the
pattern.

Let GT𝑛 (_) be the set of Gelfand–Tsetlin patterns with 𝑛 rows and top row _.

𝑥14 𝑥24 𝑥34 𝑥44
𝑥13 𝑥23 𝑥33

𝑥12 𝑥22
𝑥11

𝑥𝑖, 𝑗

𝑥𝑖, 𝑗+1 𝑥𝑖+1, 𝑗+1

𝑥𝑖−1, 𝑗−1 𝑥𝑖, 𝑗−1

≥ ≥
≥ ≥

Figure 5.2: Left: the arrangement of a GT pattern of size 4. Right: the local inequalities.

Note 5.3. Given a Gelfand–Tsetlin pattern 𝑥 , it will sometimes be useful to let 𝑥𝑖 𝑗 := ∞ for all 𝑖 < 1 and
𝑗 ≥ 0, and to let 𝑥𝑖 𝑗 := 0 for all 𝑖 > 𝑗 ≥ 0. In this manner, for instance, the local inequalities are always
well-defined in rows 1, ..., 𝑛 − 1. (Here, the symbol ∞ is taken to be either a number 𝑁 ≫ 1 or the formal
neutral element with respect tomin.)

· · · 𝑥14 𝑥24 𝑥34 𝑥44 · · ·
· · · ∞ 𝑥13 𝑥23 𝑥33 0 · · ·
· · · ∞ 𝑥12 𝑥22 0 · · ·

· · · ∞ ∞ 𝑥11 0 0 · · ·
· · · ∞ ∞ 0 0 · · ·

Proposition 5.4. There is a bijection between the sets SSYT𝑛 (_) and GT𝑛 (_), by letting 𝑥 (𝑘) be defined
as the shape of the co-restriction of 𝑇 to [𝑘]; i.e., 𝑥 (𝑘) is the shape of 𝑇 −1 [𝑘].

26



CHAPTER 5. PATTERN COMBINATORICS 27

Example 5.5. Let _ = (3, 2) and let 𝑛 = 3. The following semistandard Young tableau corresponds to the
following Gelfand–Tsetlin pattern:

1 1 3

2 3
←→

3 2 0
2 1

2

Proof. Under the proposed map, 𝑥𝑖, 𝑗 counts the number of entries less or equal to 𝑗 in the 𝑖th row of the
tableau. Row 𝑖 of the tableau is weakly increasing if and only if 𝑥𝑖1 ≤ 𝑥𝑖2 ≤ · · · ≤ 𝑥𝑖𝑛 .

The tableau is then semistandard if and only if 𝑇 −1 (𝑘) is a horizontal strip for each 𝑘 , i.e., contains
no vertical dominoes. But to contain a domino in the 𝑗th column between rows 𝑖 and 𝑖 + 1 is exactly the
condition 𝑥𝑖, 𝑗 > 𝑥𝑖+1, 𝑗 . ■

Under the above bijection, the Bender–Knuth involution 𝐵𝐾A
𝑗 translates to the following map of GT

patterns [BK95]: it only affects the entries in the 𝑗th row 𝑥 ( 𝑗) , and it sends

𝑥𝑖, 𝑗 to min{𝑥𝑖, 𝑗+1, 𝑥𝑖−1, 𝑗−1} +max{𝑥𝑖+1, 𝑗+1, 𝑥𝑖, 𝑗−1} − 𝑥𝑖, 𝑗 ,

where the minimum and maximum simply ignore non-existing entries. (Alternatively, we could follow
the convention from Note 5.3.) Indeed, that only the 𝑗th row is affected is clear. (This means that only
𝑇 −1 ( 𝑗) and 𝑇 −1 ( 𝑗 + 1) change.) Now we ask, in the 𝑖th row of the tableau, where does the mutable
{ 𝑗, 𝑗 + 1}-word end? Either at the 𝑥𝑖, 𝑗+1th entry, if there are no { 𝑗, 𝑗 + 1}-vertical dominoes between
rows 𝑖 and 𝑖 + 1, or at the 𝑥𝑖−1, 𝑗−1th entry, otherwise. Altogether, at entry numbermin{𝑥𝑖, 𝑗+1, 𝑥𝑖−1, 𝑗−1}.
Similarly, the word starts at entry number max{𝑥𝑖+1, 𝑗+1, 𝑥𝑖, 𝑗−1}. The formula is now clear.

Example 5.6. Let 𝑖 = 3. We bring back our running example from Figures 4.9 and 4.10. Let us focus on
the second row of the tableau. The mutable {3, 4}-word in this row is highlighted in the diagram below.

1 1 1 1 2 2 3 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

To compute its end, see the next diagram: the word ends at the minimum between 6 (the number of colored
boxes in row 1) and 9 (the number of colored boxes in row 2).

1 1 1 1 2 2 3 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

Similarly, to compute its start, see the final diagram: it starts at the maximum of 3 (the number of colored
boxes in row 2) and 4 (the number of colored boxes in row 3).

1 1 1 1 2 2 3 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

More generally, given a poset 𝑃 , consider the set Z𝑃 = {𝑓 : 𝑃 → Z} of Z-labellings of 𝑃 . We define
a map 𝑇𝑣 : Z𝑃 → Z𝑃 by letting 𝑇𝑣 𝑓 be defined as 𝑓 in 𝑃 − {𝑣} and sending

𝑣 to min{𝑓 (𝑢) : 𝑢 ⋖ 𝑣} +max{𝑓 (𝑢) : 𝑣 ⋖ 𝑢} − 𝑓 (𝑣),

where𝑢⋖𝑣 refers to 𝑣 covering𝑢. The map𝑇𝑣 is called the 𝑣-toggle. It is easy to see that the composition
of toggles onmutually non-covering vertices commutes. We recover the above definition by considering
the poset induced by the local inequalities given in Figure 5.2. Now, the 𝑗th Bender–Knuth involution
is the composition of the 𝑣-toggles on the elements of row 𝑗 of the pattern, in any order.
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Definition 5.7. A (King) symplectic pattern is a Gelfand–Tsetlin pattern in which 𝑥𝑖 𝑗 = 0 whenever
2𝑖 > 𝑗 (see [Kin76]). (Symplectic patterns are thus “half-triangular” arrays.) We let KSpP𝑛 (_) be the set
of (King) symplectic patterns with 2𝑛 rows and top row _.

A (Sundaram) orthogonal pattern is a symplectic pattern in which top row entries might be
circled. Let 𝑥 be a Sundaram orthogonal pattern on 𝑁 rows. For each entry 𝑥𝑖𝑁 in the top row, let
_𝑖 := 𝑥𝑖𝑁 + 1 if the entry is circled and _𝑖 := 𝑥𝑖𝑁 otherwise. We call _ = (_1, ..., _𝑁 ) the shape of the
pattern. We let SOP𝑛 (_) be the set of Sundaram’s orthogonal patterns with 2𝑛 rows and shape _.

Note 5.8. Themaps fromNote 4.5 togetherwith the bijection fromProposition 5.4 give bijections KSpT𝑛 (_) ↔
KSpP𝑛 (_) and SOT𝑛 (_) ↔ SOP𝑛 (_). For instance, letting _ = (3, 2), we get the following correspondences.

1 1′ 2

2 2′
←→

3 2
3 1

2
1

1 1′ ∞
2 2′

←→

2⃝ 2
2 1

2
1

Proposition 5.9. Symplectic polynomials in 𝑛 letters are𝑊 (𝐶𝑛)-symmetric.

Note 5.10. The following is the first combinatorial proof as far as we are aware. We define a type C
analogue for Bender–Knuth involutions. This was done already in [Sun86], but the proof is incomplete. It
is also cited erroneously in [Catalog]. See the discussion in MO:362997.

Proof. Recall from Section 2.2 that the group𝑊 (𝐶𝑛) is generated by the transpositions (𝑖 𝑖 ′) and the
permutations (𝑖 𝑖+1) (𝑖 ′ 𝑖+1′).

The symplectic tableaux in KSpT𝑛 (_) are invariant under (𝑖 𝑖 ′) by type A Bender–Knuth involutions.
To make this precise, we consider the injective map from Note 4.5 composed with the (2𝑖 − 1)st type A
Bender–Knuth involution. Since both 𝑖 and 𝑖 ′ can each appear on exactly the same rows (the first 𝑖 rows,
more precisely), the resulting tableau is symplectic. (In this proof, we will denote type A Bender–Knuth
involutions by the transposition they induce on A = {1 < 1′ < · · · < 𝑛 < 𝑛′}.)

To show that they are invariant under (𝑖 𝑖+1) (𝑖 ′ 𝑖+1′), we write this permutation as a product of
simple transpositions; (𝑖 ′ 𝑖+1) (𝑖+1 𝑖+1′) (𝑖 𝑖 ′) (𝑖 ′ 𝑖+1). For each of these, we perform a type A Bender–Knuth
involution.

𝑇0
(𝑖′ 𝑖+1)
↦−−−−−−→ 𝑇1

(𝑖 𝑖′)
↦−−−−→ 𝑇2

(𝑖+1 𝑖+1′)
↦−−−−−−−−→ 𝑇3

(𝑖′ 𝑖+1)
↦−−−−−−→ 𝑇4. (5.11)

More precisely, using Note 4.5 again, the maps above are 𝐵𝐾A
2𝑖 , 𝐵𝐾A

2𝑖−1, 𝐵𝐾A
2𝑖+1, and 𝐵𝐾A

2𝑖 , respectively.
However, 𝑇4 needs not be symplectic: we might find an instance of 𝑖 ′ in row 𝑖 + 1. (Finding an instance
of 𝑖 in row 𝑖 + 1 would contradict 𝑇4 being semistandard.)
Claim. If 𝑇4 (𝑖 + 1, 𝑗) = 𝑖 ′ for some 𝑗 , then 𝑇4 (𝑖, 𝑗) = 𝑖 .

Proof of claim. Since 𝑇4 (𝑖 + 1, 𝑗) is an element of {𝑖, 𝑖 ′, 𝑖 + 1, 𝑖 + 1′}, then also 𝑇0 (𝑖 + 1, 𝑗) is. Indeed, the
composite in Equation (5.11) only affects these entries.

Since 𝑇0 is symplectic, 𝑇0 (𝑟, 𝑐) ≥ 𝑟 for all (𝑟, 𝑐) ∈ [_]. In particular, 𝑇0 (𝑖, 𝑗) ≥ 𝑖 .
Altogether, using that𝑇0 is semistandard, we get that𝑇0 (𝑖, 𝑗) is in {𝑖, 𝑖 ′, 𝑖 + 1, 𝑖 + 1′}, and thus𝑇4 (𝑖, 𝑗)

too.
Since𝑇4 is semistandard (because Bender–Knuth involutions arewell-defined on semistandard Young

tableaux), we have 𝑇4 (𝑖, 𝑗) < 𝑇4 (𝑖 + 1, 𝑗) = 𝑖 ′. We conclude 𝑇4 (𝑖, 𝑗) = 𝑖 . □

We have shown that, if 𝑇4 is not symplectic, then there are some {𝑖, 𝑖 ′}-vertical dominoes between
rows 𝑖 and 𝑖 + 1. So we compose with a final map 𝑇4 ↦→ 𝑇5, which changes every such domino for a
{𝑖 + 1, 𝑖 + 1′}-vertical domino and then resorts both rows as to make them weakly increasing again. We
refer to this map as “rectification”.

https://mathoverflow.net/questions/362997
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This procedure always gives a symplectic tableau𝑇5 of weight (𝑖 𝑖 + 1) (𝑖 ′ 𝑖 + 1′).𝑥𝑇0 , as desired. We
denote the composite map as 𝐵𝐾C

𝑖 , and call it a type C Bender–Knuth involution. Explicitly (using Note
4.5 again),

𝐵𝐾C
𝑖 := rectification ◦ 𝐵𝐾A

2𝑖 ◦ 𝐵𝐾A
2𝑖+1 ◦ 𝐵𝐾A

2𝑖−1 ◦ 𝐵𝐾A
2𝑖 .

To show that this is an involution, we switch to the symplectic pattern model. The type A Bender–
Knuth involution 𝐵𝐾A

𝑗 for Gelfand–Tsetlin patterns is described above. The last step of our proposed
map, rectification, translates to the map of Gelfand–Tsetlin patterns

∗ ∗ 0 0
∗ ∗+𝑐 0
∗+𝑐 𝑐

∗+𝑐

↦−→

∗ ∗ 0 0
∗ ∗ 0
∗ 0
∗

as to make the pattern symplectic. Explicitly, by our analysis above, the pattern 𝑥 corresponding to 𝑇4
(see Eq. (5.11)) may not be symplectic. By the claim, this would imply that 𝑥𝑖+1,2𝑖 is non-zero. In this
case, changing every {𝑖, 𝑖 ′}-vertical domino between rows 𝑖 and 𝑖 + 1 of 𝑇4 corresponds to substracting
𝑥𝑖+1,2𝑖 from the entries 𝑥𝑖+1,2𝑖 , 𝑥𝑖+2,2𝑖+1, 𝑥𝑖,2𝑖 and 𝑥𝑖,2𝑖−1, in particular rendering the pattern symplectic.

These formulas allow one to write, in principle, the entries of (𝐵𝐾C
𝑖 )2 (𝑥) as tropical rational func-

tions in the entries of 𝑥 (that is, expressions involving max, min, + and −). These formulas, however,
quickly become untracktable. We will see how to bypass this in what follows.

We note, given that the rectificationmap is fairly localized, thatmost of the entries of (𝐵𝐾C
𝑖 )2 (𝑥)may

immediately be seen to agree with those of 𝑥 , since type A Bender–Knuth involutions are involutions
and since 𝐵𝐾A

2𝑖−1 commutes with 𝐵𝐾A
2𝑖+1. But some entries of (𝐵𝐾C

𝑖 )2 (𝑥) are affected by the rectification
map. A close inspection of our composite reveals that only the last two non-zero entries in rows 2𝑖 + 1,
2𝑖 and 2𝑖 − 1 of the pattern are affected. So it is enough to show that 𝐵𝐾C

2 is an involution on a generic
pattern of size 6.

Finally, consider the composite

𝐵𝐾A
4 ◦ 𝐵𝐾A

5 ◦ 𝐵𝐾A
3 ◦ 𝐵𝐾A

4 ◦ 𝐵𝐾A
4 ◦ 𝐵𝐾A

5 ◦ 𝐵𝐾A
3 ◦ 𝐵𝐾A

4 ,

which is the identity since 𝐵𝐾A
5 and 𝐵𝐾A

3 commute. This composite was obtained from (𝐵𝐾C
2 )2 by

ignoring the rectification maps. Our strategy to show that (𝐵𝐾C
2 )2 is the identity is to compare it with

the above composite. This comparison reveals that the first rectification map introduces an “error” that
is later canceled by the second rectification map. We leave the details of this computation to Appendix
A. ■

Example 5.12. Let 𝑖 = 2. We illustrate the analogue of the 𝑖th Bender–Knuth involution for type C as the
following composite:

1 2 2′

3 3 3′

3′ 3′

(2′ 3)
↦−−−−−→

1 2 3

2′ 2′ 3′

3′ 3′

(2 2′)
↦−−−−−→

1 2 3

2 2′ 3′

3′ 3′

(3 3′)
↦−−−−−→

1 2 3

2 2′ 3′

3 3

(2′ 3)
↦−−−−−→

1 2 2′

2 2′ 3′

2′ 3

rectification↦−−−−−−−−−−−→
1 2 2′

2′ 3 3′

3 3′

Each of the four first maps are type A Bender–Knuth involutions, and the last map rectifies the tableau by
getting rid of the {2, 2′}-vertical domino between the second and third rows.

Note 5.13. During the development of the thesis, another proof of the above map being an involution was
proposed. This proof consists on two parts. The first part is to detropicalize the expression for Bender–
Knuth involutions on GT patterns. Detropicalization refers to a map of semifields that can be described in
layman terms as follows: starting with an expression in terms of “max”s and sums, change each instance
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of “max” for a sum and each sum for a product. The result will be a rational function. For instance, the
detropicalization of the 𝑣-toggle is the map

𝑣 ↦→
∑
𝑣⋖𝑢 𝑓 (𝑢)(∑

𝑢⋖𝑣
1

𝑓 (𝑢)

)
· 𝑓 (𝑣)

.

This allows one, in turn, to detropicalize Bender–Knuth involutions. Once these Bender–Knuth involu-
tions and the rectification map are detropicalized, the equations of the composite were fed into SageMath,
which checked that the detropicalization of the composite on a pattern of order 6 is an involution (as a
rational function).

A second part of this argument is to show that the order of our original map must coincide with the
order of its detropicalization. Since detropicalization and composition do not commute in general, this is
not a trivial statement. We were not able to show this. See [Roé13] or [GR16] for more instances of this
general type of problems.

Note 5.14. Our defined type C Bender–Knuth involutions do not verify the braid relations of the Weyl
group of type C. For instance, 𝑠1𝑠2𝑠1 = 𝑠2𝑠1𝑠2, but

𝐵𝐾C
1 𝐵𝐾

C
2 𝐵𝐾

C
1

1 1 1′

2
=

1 1′ 2′

2
≠

2 1′ 2′

2′
=𝐵𝐾C

2 𝐵𝐾
C
1 𝐵𝐾

C
2

1 1 1′

2
.

See also Note 4.11. In the literature, combinatorial descriptions of type C Lascoux–Schützen-berger
involutions are available (see e.g. [San21]), but defined on a different combinatorial model: Kashiwara’s
tableaux. Showing that there is a weight-preserving bijection between King’s and Kashiwara’s tableaux
would then give an alternative proof of Proposition 5.9. See Chapter 8 for such a bijection.

Note also that our analogues for Bender–Knuth involutions do not agreewith Lascoux–Schützenberger’s
(as expected) even for column or row tableaux. See Appendix B.

Corollary 5.15. Orthogonal polynomials in 𝑛 letters are𝑊 (𝐵𝑛)-symmetric.

Proof. We have𝑊 (𝐵𝑛) =𝑊 (𝐶𝑛). Consider the bijection SOT𝑛 (_) →
⋃
` KSpT𝑛 (`) from Note 4.5. It is

weight-preserving. We can then write

𝑜_ =
∑︁

𝑇 ∈SOT𝑛 (_)
𝑥𝑇 =

∑̀︁ ∑︁
𝑇 ∈KSpT𝑛 (`)

𝑥𝑇 =
∑̀︁

𝑠𝑝` .

The result falls now from Proposition 5.9 (the analogous result for type C). ■



Chapter 6

The algebraic definition
(Jacobi–Trudi determinants)

Another classic definition of Schur polynomials is through Jacobi–Trudi’s formulas. It defines Schur
polynomials in terms of another basis of the algebra of symmetric polynomials, discussed in Chapter 1.
We present it in the form of a theorem.

Theorem 6.1 (Jacobi–Trudi [Jac41, Tru64, Sag01, Sta99]). Let 𝑋 = 𝑥1 + · · · + 𝑥𝑛 be an alphabet. We
have

𝑠_ (𝑋 ) = det
(
ℎ_𝑖−𝑖+𝑗 (𝑋 )

)
1≤𝑖, 𝑗≤𝑛 ∈ Λ𝑛 (𝑋 ),

where ℎ0 = 1 and ℎ−𝑘 = 0 for all 𝑘 ≥ 1.

We will provide a combinatorial proof of this theorem, via the lattice path method deve-loped in
[Lin73, GV85].

Lemma 6.2 (Lindström, Gessel–Viennot [Lin73, GV85]). Let 𝐺 = (𝑉 , ®𝐸,𝑤) be a weighted digraph.
Let 𝐴 = {𝑎1, ..., 𝑎𝑛} and 𝐵 = {𝑏1, ..., 𝑏𝑛} be two distinguished sets of nodes. Let𝑊 (𝑎𝑖 , 𝑏 𝑗 ) be the weighted
sum of the set of paths from 𝑎𝑖 to 𝑏 𝑗 . Assume furthermore that for any 𝑛 paths 𝑃1, ..., 𝑃𝑛 with 𝑃𝑖 : 𝑎𝑖 → 𝑏𝜎 (𝑖)
for some 𝜎 ∈ S𝑛 , if the paths are pairwise nonintersecting, then 𝜎 = id. Then,

det
(
𝑊 (𝑎𝑖 , 𝑏 𝑗 )

)
1≤𝑖, 𝑗≤𝑛 =

∑︁
(𝑃1,...,𝑃𝑛)
𝑃𝑖 :𝑎𝑖→𝑏𝑖

nonintersecting

𝑤 (𝑃1) · · ·𝑤 (𝑃𝑛).

Proof. We begin by expanding the determinant,

det
(
𝑊 (𝑎𝑖 , 𝑏 𝑗 )

)
1≤𝑖, 𝑗≤𝑛 =

∑︁
𝜎 ∈S𝑛

sgn(𝜎)
∏
𝑖∈[𝑛]

𝑊 (𝑎𝑖 , 𝑏𝜎 (𝑖) )

=
∑︁
𝜎 ∈S𝑛

sgn(𝜎)
∏
𝑖∈[𝑛]

∑︁
𝑃 :𝑎𝑖→𝑏𝜎 (𝑖 )

𝑤 (𝑃) =
∑︁
𝜎 ∈S𝑛

sgn(𝜎)
∑︁

(𝑃1,...,𝑃𝑛)
𝑃𝑖 :𝑎𝑖→𝑏𝜎 (𝑖 )

𝑤 (𝑃1) · · ·𝑤 (𝑃𝑛).

The result is now shown via a weight-preserving sign-reversing involutionΦ: if we define such amap on
the set of intersecting tuples of 𝑛 paths, these will therefore cancel out in the sum. Only nonintersecting
𝑛-tuples survive, and these are all summed with a positive sign, since by hypothesis they induce the
identity permutation.

31
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To define the involution Φ, let (𝑃1, ..., 𝑃𝑛) be intersecting and let (𝑖, 𝑗) be the first tuple (with respect
to the lexicographic order) such that 𝑃𝑖 and 𝑃 𝑗 intersect. Let 𝑥 be the first node in which they intersect.
We write schematically 𝑃𝑖 : 𝑎𝑖 → 𝑥 → 𝑏𝜎 (𝑖) and 𝑃 𝑗 : 𝑎 𝑗 → 𝑥 → 𝑏𝜎 ( 𝑗) . We let Φ((𝑃1, ..., 𝑃𝑛)) be the
tuple (𝑃1, ..., 𝑃 ′𝑖 , ..., 𝑃 ′𝑗 , ..., 𝑃𝑛), where 𝑃 ′𝑖 : 𝑎𝑖 → 𝑥 → 𝑏𝜎 ( 𝑗) is constructed by following 𝑃𝑖 from 𝑎𝑖 to 𝑥 and
𝑃 𝑗 from 𝑥 to 𝑏𝜎 ( 𝑗) , and 𝑃 ′𝑗 : 𝑎 𝑗 → 𝑥 → 𝑏𝜎 (𝑖) is constructed similarly. See Figure 6.3.

𝑎𝑖

𝑏𝜎 (𝑖)𝑎 𝑗

𝑏𝜎 ( 𝑗)

𝑥

Φ↦−→
𝑎𝑖 𝑏𝜎 ( 𝑗)

𝑎 𝑗 𝑏𝜎 (𝑖)
𝑥

Figure 6.3: The involution Φ sends 𝑃𝑖 and 𝑃 𝑗 on the left to 𝑃 ′𝑖 and 𝑃 ′𝑗 on the right. (The paths on the right
also intersect at 𝑥 .)

That this is an involution is clear, thanks to the lexicographic order. It is well defined on the set of
intersecting tuples of paths. It is weight-preserving, since the set of edges involved in (𝑃1, ..., 𝑃𝑛) and
in Φ((𝑃1, ..., 𝑃𝑛)) coincide. It is sign-reversing, since the permutation associated with Φ((𝑃1, ..., 𝑃𝑛)) is
𝜎 ◦ (𝑖 𝑗). ■

Proof of Thm. 6.1. Let _ = (_1, ..., _𝑙 ) be a partition. Define a weighted lattice digraph 𝐿 = (𝑉 , ®𝐸,𝑤) with
vertex set [𝑁 ] × [𝑛] (for 𝑁 ≫ 1) and arrows going from each node (𝑖, 𝑗) to the one immediately east
(𝑖 + 1, 𝑗) and to the one immediately north (𝑖, 𝑗 + 1). The weight of a vertical arrow is 1 and the weight
of a horizontal arrow is 𝑥 𝑗 if it is at height 𝑗 .

Define two distinguished sets of nodes;𝐴 = {𝑎𝑘 := (𝑘, 1) : 1 ≤ 𝑘 ≤ 𝑙} and 𝐵 = {𝑏𝑘 := (𝑘 +_𝑙−𝑘 , 𝑛) :
1 ≤ 𝑘 ≤ 𝑙}.

We identify ℎ_𝑖−𝑖+𝑗 (𝑥1, ..., 𝑥𝑛) with the weighted sum of all possible paths from 𝑎𝑖 to 𝑏 𝑗 .
Applying Lindström–Gessel–Viennot’s Lemma 6.2 to the set of tuples (𝑃1, ..., 𝑃𝑙 ) of paths from 𝐴 to

𝐵 gives
det(ℎ_𝑖−𝑖+𝑗 (𝑥1, ..., 𝑥𝑛)

)
1≤𝑖, 𝑗≤𝑛 =

∑︁
(𝑃1,...,𝑃𝑛)
𝑃𝑖 :𝑎𝑖→𝑏𝑖

nonintersecting

𝑤 (𝑃1) · · ·𝑤 (𝑃𝑛).

Given such a tuple, one constructs a semistandard Young tableaux of shape _ by letting𝑤 (𝑃𝑙+1−𝑖 ) be the
weight of the 𝑖th row of the tableau. See Figure 6.5.
Claim. This map is well-defined and bijective.

Proof of claim. Given a tuple (𝑃1, ..., 𝑃𝑛) of paths, with 𝑃𝑖 : 𝑎𝑖 → 𝑏𝑖 , the above procedure uniquely
determines a set of weakly increasing rows. To see that they indeed define a semistandard Young tableau,
onemust check that, once these are interpreted as a single tableau𝑇 , columns of𝑇 are strictly increasing.
Note that under the above correspondence𝑇 (𝑖, 𝑗) =𝑚 if the edge (𝑙 −𝑖 + 𝑗,𝑚) → (𝑙 −𝑖 + 𝑗 +1,𝑚) belongs
to 𝑃𝑙+1−𝑖 .

Suppose therefore that𝑇 is semistandard restricted to the first 𝑖 rows, and that it is even semistandard
if the first 𝑗 − 1 columns of row 𝑖 + 1 are considered, but that 𝛼 := 𝑇 (𝑖, 𝑗) ≥ 𝑇 (𝑖 + 1, 𝑗) =: 𝛽 . If we let
𝛾 := 𝑇 (𝑖 + 1, 𝑗 − 1), then

• (𝑙 − 𝑖 + 𝑗, 𝛼) → (𝑙 − 𝑖 + 𝑗 + 1, 𝛼) belongs to 𝑃𝑙+1−𝑖 ,

• (𝑙 − 𝑖 + 𝑗 − 1, 𝛽) → (𝑙 − 𝑖 + 𝑗, 𝛽) belongs to 𝑃𝑙−𝑖 , and

• (𝑙 − 𝑖 + 𝑗 − 1, 𝛾) → (𝑙 − 𝑖 + 𝑗, 𝛾) belongs to 𝑃𝑙+1−𝑖 .
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By the inequalities 𝛾 ≤ 𝛽 ≤ 𝛼 which we have by hypotheses, these two paths intersect at (𝑙 − 𝑖 + 𝑗 −
1, 𝛽), giving a contradiction. See Figure 6.4.

𝑎𝑙+1−𝑖 . . .
𝑥𝛾

𝑥𝛼 . . . 𝑏𝑙+1−𝑖
𝑎𝑙−𝑖 . . .

𝑥𝛽
. . . 𝑏𝑙−𝑖(𝑙 − 𝑖 + 𝑗 − 1, 𝛽)

Figure 6.4: The paths 𝑃𝑙+1−𝑖 and 𝑃𝑙−𝑖 intersect at (𝑙 − 𝑖 + 𝑗 − 1, 𝛽).

We may define the inverse row by row. This is well defined by the reciprocal argument to the one
above: if the resulting path is intersecting, say if path 𝑎𝑖 → 𝑏𝑖 intersects 𝑎 𝑗 → 𝑏 𝑗 (say 𝑖 > 𝑗 ) at (𝑘,𝑚),
then𝑇 (𝑙 +1−𝑖, 𝑘−𝑙 −1+𝑖) ≥ 𝑚 = 𝑇 (𝑙 +1− 𝑗, 𝑘−𝑙 −1+𝑖), which contradicts𝑇 being semistandard. □■

1 1 2 4

2 3 3

3

←→

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑥3

𝑥2

𝑥3 𝑥3

𝑥1 𝑥1

𝑥2

𝑥4

Figure 6.5: The classic bijection between Young tableaux and nonintersecting lattice paths.

Note 6.6. For the bijection between paths and tableaux, the set𝐴 can be taken as the diagonal {(𝑘, 𝑙−𝑘+1) :
1 ≤ 𝑘 ≤ 𝑙} instead. A different determinantal formula arises. Namely, 𝑠_ (𝑋 ) = det(ℎ_𝑖−𝑖+𝑗 (𝑋𝑖 ))1≤𝑖, 𝑗≤𝑛 ,
where 𝑋𝑖 := 𝑥𝑖 + · · · + 𝑥𝑛 .

Theorem 6.7 (Dual Jacobi–Trudi). Let 𝑋 = 𝑥1 + · · · + 𝑥𝑛 be an alphabet. We have

𝑠_ (𝑋 ) = det
(
𝑒_′

𝑖
−𝑖+𝑗 (𝑋 )

)
1≤𝑖, 𝑗≤𝑛 ∈ Λ𝑛 (𝑋 ),

where 𝑒0 = 1 and 𝑒−𝑘 = 0 for all 𝑘 ≥ 1.

Sketch of proof. We sketch two different proofs. The first sketch assumes the Jacobi–Trudi formula 6.1.
To see why both determinants coincide, one may use that the 𝜔 involution on symmetric polynomials
(see Chapter 1) takes 𝑠_ to 𝑠_′ [Sta99, Thm. 7.15.6]. Assuming this, since it is an algebra homomorphism
by definition, we can write

𝑠_ (𝑋 ) = 𝜔 (𝑠_′ (𝑋 )) = 𝜔
(
det

(
ℎ_′

𝑖
−𝑖+𝑗 (𝑋 )

)
1≤𝑖, 𝑗≤𝑛

)
= det

(
𝜔 (ℎ_′

𝑖
−𝑖+𝑗 (𝑋 ))

)
1≤𝑖, 𝑗≤𝑛 = det

(
𝑒_′

𝑖
−𝑖+𝑗 (𝑋 )

)
1≤𝑖, 𝑗≤𝑛 .

Alternatively, one can mimic the combinatorial proof of Theorem 6.1, suitably modifying the construc-
tion. See, for instance [Sag01, Thm. 4.5.1]. ■

In the same spirit, in [FH91, KT87], they define a family of symmetric polynomials that specialize
to the irreducible characters of types B and C.
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Definition 6.8. We define the symmetric polynomial

𝐷_ := det
(
ℎ_𝑖−𝑖+1

�� ℎ_𝑖−𝑖+𝑗 + ℎ_𝑖−𝑖−𝑗+2)1≤𝑖, 𝑗≤𝑛 ∈ Λ2𝑛 .

The notation for the determinant is det(𝑎𝑖,1 |𝑎𝑖, 𝑗 )𝑖, 𝑗 = det(𝑎𝑖, 𝑗 )𝑖, 𝑗 . Here, ℎ0 = 1 and ℎ−𝑘 = 0 for all 𝑘 ≥ 1.

Two alternative descriptions of this symmetric polynomial are given below. The first one (Theorem
6.9) can be thought of as an analogue of the dual Jacobi–Trudi formula 6.7, whereas the second one
(Lemma 6.11) is analogous to the formula given in Note 6.6, and allows us to give a simple and elegant
combinatorial proof similar to the one given for type A. Further descriptions of 𝐷_ may be found in
[FH91, Section A.3].

Theorem 6.9. We have
𝐷_ = det(𝑒_′

𝑖
−𝑖+𝑗 − 𝑒_′

𝑖
−𝑖−𝑗 )1≤𝑖, 𝑗≤𝑛 ∈ Λ2𝑛 .

Here, 𝑒0 = 1 and 𝑒−𝑘 = 0 for all 𝑘 ≥ 1.

We will follow the proof found in [FH91, Section A.3]. We use the following technical lemma.

Lemma 6.10. Fix integers 𝑟 and 𝑘 ≤ 𝑟 . Let 𝐴 and 𝐵 be 𝑟 × 𝑟 matrices, with 𝐴𝐵 = 𝑐𝐼 for some scalar 𝑐 . Let
𝜎 = (𝑆, 𝑆 ′) and 𝜏 = (𝑇,𝑇 ′) be words in [𝑟 ]𝑘 × [𝑟 ]𝑟−𝑘 corresponding to permutations in S𝑟 . Then,

det(𝐴) det(𝐵𝑆′,𝑇 ′) = sgn(𝜎) sgn(𝜏)𝑐𝑟−𝑘 det(𝐴𝑆,𝑇 ),

where 𝐴𝑆,𝑇 = (𝐴𝜎 (𝑖),𝜏 ( 𝑗) )𝑖, 𝑗≤𝑘 and 𝐵𝑆′,𝑇 ′ = (𝐵𝜎 (𝑖+𝑘),𝜏 ( 𝑗+𝑘) )𝑖, 𝑗≤𝑙 are submatrices of 𝐴 and 𝐵, respectively.

Proof. Let 𝑃 and 𝑄 be the permutation matrices of 𝜎 and 𝜏−1, respectively. Then, we can write

𝑃𝐴𝑄 =

(
𝐴1 𝐴2

𝐴3 𝐴4

)
and 𝑄−1𝐵𝑃−1 =

(
𝐵1 𝐵2

𝐵3 𝐵4

)
with 𝐴1 = 𝐴𝑆,𝑇 and 𝐵4 = 𝐵𝑆′,𝑇 ′ . We have(

𝐴1 𝐴2

𝐴3 𝐴4

) (
𝐼 𝐵2

0 𝐵4

)
=

(
𝐴1 0
𝐴3 𝑐𝐼

)
,

and taking determinants, det(𝑃) det(𝑄) det(𝐴) det(𝐵4) = det(𝐴1) · 𝑐𝑟−𝑘 , giving the result. ■

Proof of Thm. 6.9. The proof will follow from Lemma 6.10. Let 𝑟 = 𝑙 (_) +𝑙 (_′) and let 𝑘 = 𝑙 (_). To define
matrices 𝐴 and 𝐵, we are going to fold two matrices 𝐻 := (ℎ𝑖−𝑗 )𝑖, 𝑗≤𝑟 and 𝐸 := ((−1)𝑖−𝑗𝑒𝑖−𝑗 )𝑖, 𝑗≤𝑟 .

More precisely, 𝐴 is going to be the matrix resulting from folding 𝐻 along the 𝑘th column and
adding to each column to the left of the fold the column which lies the same distance to the right of
the fold. Similarly, 𝐵 is constructed by folding along the 𝑘th row and subtracting rows. For instance, for
𝑟 = 4, 𝑘 = 3,

𝐻 =

(
1 0 0 0
ℎ1 1 0 0
ℎ2 ℎ1 1 0
ℎ3 ℎ2 ℎ1 1

)
↦→ 𝐴 =

(
1 0 0 0
ℎ1 1 0 0
ℎ2 ℎ1 1 0
ℎ3 1+ℎ2 ℎ1 1

)
, 𝐸 =

( 1 −𝑒1 𝑒2 −𝑒3
0 1 −𝑒1 𝑒2
0 0 1 −𝑒1
0 0 0 1

)
↦→ 𝐵 =

(
1 −𝑒1 𝑒2 −𝑒3
0 1 −𝑒1 𝑒2
0 0 1 −𝑒1
0 −1 𝑒1 1−𝑒2

)
.

Note that 𝐻𝐸 = 𝐼 by Corollary 1.13.
Claim 3. 𝐴𝐵 = 𝐼 .

Proof of claim. It suffices to show that if 𝐻𝐸 = 𝐼 then the same holds for their folded versions. In this
proof, 𝐻 = (𝐻𝑖, 𝑗 )𝑖, 𝑗 and 𝐸 = (𝐸𝑖, 𝑗 )𝑖, 𝑗 may be taken to be arbitrary matrices. After folding the matrices
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along the 𝑘th column and row, respectively, and multiplying the resulting matrices 𝐴 and 𝐵, we get a
new matrix𝑀 that we claim is the identity. Indeed, we have

𝑀𝑖, 𝑗 =
∑︁
𝑝∈[𝑛]

𝐴𝑖,𝑝𝐵𝑝,𝑗 =
∑︁
𝑝<𝑘

𝐴𝑖,𝑝𝐵𝑝,𝑗 +𝐴𝑖,𝑘𝐵𝑘,𝑗 +
∑︁
𝑝>𝑘

𝐴𝑖,𝑝𝐵𝑝,𝑗

=
∑︁
𝑝<𝑘

(𝐻𝑖,𝑝 + 𝐻𝑖,2𝑘−𝑝 )𝐸𝑝,𝑗 + 𝐻𝑖,𝑘𝐸𝑘,𝑗 +
∑︁
𝑝>𝑘

𝐻𝑖,𝑝 (𝐸𝑝,𝑗 − 𝐸2𝑘−𝑝,𝑗 )

=
∑︁
𝑝∈[𝑛]

𝐻𝑖,𝑝𝐸𝑝,𝑗 +
∑︁
𝑝<𝑘

𝐻𝑖,2𝑘−𝑝𝐸𝑝,𝑗 −
∑︁
𝑝>𝑘

𝐻𝑖,𝑝𝐸2𝑘−𝑝,𝑗

= (𝐻𝐸)𝑖, 𝑗 +
∑︁
𝑝<𝑘

𝐻𝑖,2𝑘−𝑝𝐸𝑝,𝑗 − 𝐻𝑖,2𝑘−𝑝𝐸𝑝,𝑗 = 𝛿𝑖, 𝑗 . □

Let (𝑆; 𝑆 ′) = (_1, ..., _𝑘 ;−_′1, ...,−_′𝑙 )+(𝑘, 𝑘−1, ..., 1;𝑘+1, 𝑘+2, ..., 𝑘+𝑙). Let (𝑇 ;𝑇
′) = (𝑘, 𝑘−1, ..., 1;𝑘+

1, 𝑘 + 2, ..., 𝑘 + 𝑙). That (𝑇,𝑇 ′) is a permutation is clear.
Claim 4. (𝑆, 𝑆 ′) is a permutation.

Proof of claim. We have that 𝑆 (resp. 𝑆 ′) is an injective word. Suppose there is an 𝑠 in 𝑆 ∩𝑆 ′. Then there
exist 𝑖 and 𝑗 such that _𝑖 + 𝑘 − (𝑖 − 1) = 𝑠 = 𝑘 + 𝑗 − _′𝑗 .

Equivalently, _𝑖 + _ 𝑗 = 𝑖 + 𝑗 − 1. On the right hand side, we are counting the number of boxes in
a subset [( 𝑗, 1𝑖−1)] = {(1, 𝑘) : 𝑘 ≤ 𝑗} ∪ {(𝑘, 1) : 𝑘 ≤ 𝑖} of [_]. If the cell (𝑖, 𝑗) is not in [_], then
_𝑖 ≤ 𝑗 − 1 and _′𝑗 ≤ 𝑖 − 1, which gives a contradiction. If (𝑖, 𝑗) is in [_], then _𝑖 ≥ 𝑗 and _′𝑗 ≥ 𝑖 , which
again gives a contradiction. We illustrate an example:

• • •

𝑖 + 𝑗 − 1 _𝑖 + _′𝑗 _𝑖 + _′𝑗 − 1
for (𝑖, 𝑗) ∉ [_] for (𝑖, 𝑗) ∈ [_]

□

By definition, det(𝐴𝑆,𝑇 ) = 𝐷_ and det(𝐵𝑆′,𝑇 ′) = det(𝑒_′
𝑖
−𝑖+𝑗 − 𝑒_′

𝑖
−𝑖−𝑗 )1≤𝑖, 𝑗≤𝑛 . Also, det(𝐴) = 1. We

are now in the hypotheses of Lemma 6.10, which gives the result. ■

We now present 𝐷_ with a formula that closely resembles the formula in Note 6.6.

Lemma 6.11. Let 𝑋𝑖 = 𝑥𝑖 + · · · + 𝑥𝑛 + 𝑥−1𝑖 + · · · + 𝑥−1𝑛 . Fix 𝛿 ∈ {0, 1}. We have

𝐷_ (𝑋1 + 𝛿) = det
(
ℎ_𝑖−𝑖+𝑗 (𝑋𝑖 + 𝛿)

)
1≤𝑖, 𝑗≤𝑛 ∈ Λ2𝑛 .

Proof. We loosely follow [Oka89, SV16]. We begin with an inductive formula.
Claim. ℎ𝑘 (𝑋𝑖+1 + 𝛿) = ℎ𝑘 (𝑋𝑖 + 𝛿) − (𝑥𝑖 + 𝑥−1𝑖 )ℎ𝑘−1 (𝑋𝑖 + 𝛿) + ℎ𝑘−2 (𝑋𝑖 + 𝛿).

Proof of claim. We interpret ℎ𝑘 as the generating function of (semistandard) row tableaux of size 𝑘 (see
Proposition 4.6). We assume 𝛿 = 0 for ease of notation. Assuming 𝛿 = 1 gives a similar proof.

Let 𝑅𝑘𝑖 be the set of row tableaux of size 𝑘 in the alphabet𝐴𝑖 = {𝑖 < 𝑖 ′ < · · · < 𝑛 < 𝑛′}. We construct
a weight-preserving bijection

𝑅𝑘𝑖+1 ∪
(
{ 𝑖 , 𝑖′ } × 𝑅𝑘−1𝑖

)
→ 𝑅𝑘𝑖 ∪ 𝑅𝑘−2𝑖 .

Start by sending any element of 𝑅𝑘𝑖+1 to itself. An element (𝑥,𝑇 ) in the second set of the left hand side
gets sent to the concatenation of the pair if this is possible. If this is not possible, then 𝑥 = 𝑖′ and
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𝑇 (1, 1) = 𝑖 , and we send the pair to the tableau resulting from removing the first box from 𝑇 . For
example, let 𝑖 = 2, 𝑘 = 3. Then,

3 3 4 ↦→ 3 3 4

2 , 3 4 ↦→ 2 3 4

2 , 2′ 4 ↦→ 2 2′ 4

2′ , 2 4 ↦→ 4 .

This is clearly weight-preserving. To see why it is bijective, we consider an element in the right hand
side. If the element is in 𝑅𝑘𝑖 and it has no 𝑖 , then it must come from 𝑅𝑘𝑖+1, and the preimage is uniquely
determined. If it does have an 𝑖 or an 𝑖′ , then one can split it into its first box and the rest to recover
the preimage. Finally, an element 𝑇 of 𝑅𝑘−2𝑖 must come from ( 𝑖′ ,𝑇 ′) where 𝑇 ′ is the concatenation of
𝑖 and 𝑇 . □

In order to simplify the notation, we let 𝑧𝑖
𝑘
:= ℎ𝑘 (𝑋𝑖 + 𝛿). Furthermore, for any fixed 𝑗 , let 𝑍 𝑖𝑗 be the

column vector (𝑧𝑖
_𝑘−𝑘+𝑗 )𝑘≤𝑛 . The above equation gives

𝑍 𝑖+1𝑗 = 𝑍 𝑖𝑗 − (𝑥𝑖 + 𝑥−1𝑖 )𝑍 𝑖𝑗−1 + 𝑍 𝑖𝑗−2.

Start with the matrix
(
ℎ_𝑖−𝑖+1

�� ℎ_𝑖−𝑖+𝑗 + ℎ_𝑖−𝑖−𝑗+2)1≤𝑖, 𝑗≤𝑛 , which appears implicitly on the left hand
side of our desired equation. We write it in the following way:(

𝑍1
1

��� 𝑍1
2 + 𝑍1

0

��� 𝑍1
3 + 𝑍1

−1

��� 𝑍1
4 + 𝑍1

−2

��� · · · ��� 𝑍1
𝑛 + 𝑍1

−𝑛+2

)
.

Subtracting from the 𝑗th the ( 𝑗 − 1)st column multiplied by (𝑥1 −𝑥−11 ) we obtain 𝑍2
𝑗 +𝑍2

−𝑗 −𝑍1
𝑗−2 −𝑍1

−𝑗 .
Adding now the ( 𝑗 − 2)nd column gives 𝑍2

𝑗 +𝑍2
−𝑗 . We do this process, in order, for 𝑗 = 𝑛, 𝑛− 1, ..., 2. The

resulting matrix is (
𝑍1
1

��� 𝑍2
2

��� 𝑍2
3 + 𝑍2

1

��� 𝑍2
4 + 𝑍2

0

��� · · · ��� 𝑍2
𝑛 + 𝑍2

−𝑛

)
.

In the resulting matrix, 𝑥1 appears exclusively in the first column. We freeze the first column and repeat
the argument, so that 𝑥2 appears only in the first two columns. We iterate for 𝑥3, 𝑥4, etc. until we have
the matrix (

𝑍1
1

��� 𝑍2
2

��� 𝑍3
3

��� 𝑍4
4

��� · · · ��� 𝑍𝑛𝑛 ),
which is the matrix in the right hand side of the equality we aim to show. Since column operations
preserve the determinant, we are done. ■

Theorem 6.12. We have

(B). 𝐷_ (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 , 1) = 𝑜_ (𝑥1, ..., 𝑥𝑛), and

(C). 𝐷_ (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 ) = 𝑠𝑝_ (𝑥1, ..., 𝑥𝑛).

Proof. We follow the proofs in [Oka89] and [SV16]. Fully combinatorial proofs can be found in [FK97,
Section 5] (without using Lemma 6.11).

We construct a weighted lattice digraph 𝐿 = (𝑉 , ®𝐸,𝑤) as in the proof of Theorem 6.1, with 𝑉 =

[𝐻 ] × [𝑁 ] for 𝑁 ≫ 1, where 𝐻 = 2𝑛 + 1 for type B and 𝐻 = 2𝑛 for type C. The set ®𝐸 consists of vertical
arrows (𝑖, 𝑗) → (𝑖, 𝑗 +1) of weight 1 whenever this makes sense, and horizontal arrows (𝑖, 𝑗) → (𝑖 +1, 𝑗)
for 1 ≤ 𝑗 ≤ 2𝑛, which are now of weight 𝑥𝑖 at height 2𝑖 − 1 and 𝑥−1𝑖 at height 2𝑖 . For type B exclusively,
we introduce diagonal arrows of weight 1 from each (𝑖, 2𝑛) to (𝑖 + 1, 2𝑛 + 1).
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The sets 𝐴 and 𝐵 are defined as follows:

𝐴 = {𝑎𝑘 := (𝑘, 2(𝑙 − 𝑘) + 1) : 1 ≤ 𝑘 ≤ 𝑙} and 𝐵 = {𝑏𝑘 := (𝑘 + _𝑙−𝑘 , 𝐻 ) : 1 ≤ 𝑘 ≤ 𝑙}.

(This again resembles Note 6.6.) See Figure 6.13. We thus identify ℎ_𝑖−𝑖+𝑗 (𝑋𝑖 + 𝛿) (for 𝛿 = 0 or 1,
depending if we are in type C or B respectively) with the weighted sum of paths 𝑎 𝑗 → 𝑏𝑖 .

Applying Lindström–Gessel–Viennot’s lemma and Lemma 6.11 gives the results. (By definition of
the set 𝐴, the tableaux are symplectic. The bijection is well-defined just as in type A.) ■

1 2 2

2 2′
←→

𝑎1

𝑎2

𝑏1 𝑏2

𝑥2

𝑥−12

𝑥1

𝑥2 𝑥2 1 2 ∞
2 2′

←→
𝑎1

𝑎2

𝑏1 𝑏2

𝑥2

𝑥−12

𝑥1

𝑥2

Figure 6.13: The bijection between symplectic and orthogonal tableaux and nonintersecting lattice
paths.

Recall the definition of the dominance order from Chapter 1: _ ≥ ` if _1 + · · · + _𝑖 ≥ `1 + · · · + `𝑖 for
all 𝑖 . We now give a classic but often overlooked statement for Schur polynomials and the analog for
𝐷_ . It will let us show that these latter form a basis of Λ2𝑛 .
Theorem 6.14. Let 𝑠_ =

∑
𝑑_,`ℎ` . Then 𝑑_,` ≠ 0 implies _ ≥ `. Moreover, 𝑑`,` = 1.

Proof. We use the structure of the matrix of the Jacobi–Trudi formula. Imagine we are trying to build
a counterexample; a partition ` that is as big as possible. The biggest value that `1 can get (among all
indices of the entries of the matrix) is _1 − 1 + 1 = _1. Given that we want `1 ≥ _1, this must be the
value of `1.

Now, the biggest value of `2 in a minor of the matrix is _2 − 2 + 2 = _2, given that `1 discards the
first row already. Since we want `1 + `2 ≥ _1 + _2, this must be the value of `2.

This reasoning iterates to obtain ` = _ as the biggest constituent of the sum.
To show that𝑑`,` = 1, we note that the biggest factor of the determinant constructed above is unique.

And since it is the principal diagonal, it is counted with positive sign. ■

Corollary 6.15. The family {𝑠_}_⊢𝑑 is a basis of Λ𝑑𝑛 . ■

Theorem 6.16. Let𝐷_ =
∑
𝑑_,`ℎ` . Then𝑑_,` ≠ 0 implies _ ≥ ` and |_ | ≡ |` | mod 2. Moreover, 𝑑`,` = 1.

We have 𝐷 (𝑘) = ℎ (𝑘) and 𝐷 (1𝑘 ) = 𝑒 (𝑘) − 𝑒 (𝑘−2) for all 𝑘 ∈ N.
Note 6.17. In [KT87], they show that {𝐷_}_ is a basis by invoking a similar result. Their result is the
corollary of a stronger theorem: a change of basis equation between {𝐷_}_ and {𝑠_}_ .

Proof. To show the first assertion, note that any counterexample _would necessarily have a summandℎ`
coming from det(ℎ_𝑖−𝑖+𝑗 )𝑖, 𝑗 with _ ≥ `. But the assertion is true for Schur polynomials. The congruence
equality comes from the fact that we either have (_𝑖 − 𝑖) + 𝑗 or (_𝑖 − 𝑖) − 𝑗 for all 𝑖 and 𝑗 ; these are all
an even number apart.

The fact that 𝑑`,` = 1 is the same argument as for Schur polynomials.
The last facts are also straightforward; in this cases, 𝐷_ is the determinant of 1 × 1 matrices. ■

Corollary 6.18. The family {𝐷_}_⊢𝑑 is a basis of Λ𝑑2𝑛 . ■



Chapter 7

The Lie theoretic and algebraic
definitions coincide

In this chapter, we show that the determinants given in Chapter 6 agree with the irreducible characters
of the classical Lie algebras (given in Chapter 3). Explicitly, letting 𝑋 = 𝑥1 + · · · + 𝑥𝑛 and 𝑋 = 𝑥1 + · · · +
𝑥𝑛 + 𝑥−1𝑛 + · · · + 𝑥−11 , we show:

Theorem 7.1. Let _ be a partition indexing an irreducible representation of 𝔰𝔩(𝑛), 𝔰𝔬(2𝑛 + 1), or 𝔰𝔭(2𝑛),
respectively. Then,

(A) 𝜒𝔰𝔩 (𝑛)
_
(𝑋 ) = det(ℎ_𝑖−𝑖+𝑗 (𝑋 ))1≤𝑖, 𝑗≤𝑛 ,

(B) 𝜒𝔰𝔬 (2𝑛+1)
_

(𝑋 ) = 𝐷_ (𝑋 + 1), and

(C) 𝜒𝔰𝔭 (2𝑛)
_

(𝑋 ) = 𝐷_ (𝑋 ) .

We follow [FH91, Appendix A].

The type A formula

We will start by showing the result for type A. Explicitly, we show

det(𝑥_𝑖+𝑛−𝑖
𝑗

)1≤𝑖, 𝑗≤𝑛
det(𝑥𝑛−𝑖

𝑗
)1≤𝑖, 𝑗≤𝑛

= det(ℎ_𝑖+𝑗−𝑖 (𝑋 ))1≤𝑖, 𝑗≤𝑛 .

Recall Corollary 1.13. We have the following similar result.

Lemma 7.2. Let𝑋 = 𝑥1+ · · ·+𝑥𝑛 be an alphabet. For each 𝑑 ≥ 𝑛, 𝑗 ∈ [𝑛], we have
∑𝑛
𝑖=0 (−1)𝑖𝑒𝑖 (𝑋 )𝑥𝑑−𝑖𝑗 =

0.

Proof. Let 𝑋 = 𝑥1 + · · · + 𝑥𝑛 and let 𝑋 ′ = 𝑥1 + · · · + 𝑥 𝑗−1 + 𝑥 𝑗+1 + · · · + 𝑥𝑛 . In this proof we write 𝐸 (𝑡) (𝑋 )
to specify the alphabet of 𝑒𝑑 , 𝑑 ≥ 0. On the one hand, we have

𝐸 (−𝑡) (𝑋 )
1 − 𝑥 𝑗𝑡

= 𝐸 (−𝑡) (𝑋 ′) =
∑︁
𝑑≥0
(−1)𝑑𝑒𝑑 (𝑋 ′)𝑡𝑑 .

38
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Note that 𝑒𝑑 (𝑋 ′) = 0 for 𝑑 ≥ 𝑛. On the other hand, we have

𝐸 (−𝑡) (𝑋 )
1 − 𝑥 𝑗𝑡

= 𝐸 (−𝑡) (𝑋 ) · (1 + 𝑥 𝑗𝑡 + 𝑥2𝑗 𝑡2 + · · · ) =
∑︁
𝑑≥0

(
𝑛∑︁
𝑖=0

(−1)𝑖𝑒𝑖 (𝑋 )𝑥𝑑−𝑖𝑗

)
𝑡𝑑 .

Comparing the terms of 𝑡-degree 𝑑 gives the result. ■

In particular, one may write 𝑥𝑑𝑗 in terms of 𝑒1, ..., 𝑒𝑛 and 𝑥1𝑗 , ..., 𝑥𝑑−1𝑗 . By induction, one may write
𝑥𝑑𝑗 =

∑𝑛−1
𝑖=0 𝑎

𝑑
𝑖 (𝑒1, ..., 𝑒𝑛)𝑥𝑑−𝑖𝑗 for some polynomials 𝑎𝑑𝑖 , 𝑖 = 0, ..., 𝑛 − 1, in C[𝑒1, ..., 𝑒𝑛]. Since the equation

in Corollary 1.13 is of the same form, we may also write ℎ𝑑 =
∑𝑛−1
𝑖=0 𝑎

𝑑
𝑖 (𝑒1, ..., 𝑒𝑛)ℎ𝑑−𝑖 . For any partition

_ we therefore have the matrix equations

(𝑥_𝑖+𝑛−𝑖
𝑗

)1≤𝑖, 𝑗≤𝑛 = (𝑎_𝑖+𝑛−𝑖𝑟 )1≤𝑖,𝑟 ≤𝑛 (𝑥𝑛−𝑟𝑗 )1≤𝑟, 𝑗≤𝑛 and

(ℎ_𝑖+𝑗−𝑖 )1≤𝑖, 𝑗≤𝑛 = (𝑎_𝑖+𝑛−𝑖𝑟 )1≤𝑖,𝑟 ≤𝑛 (ℎ 𝑗−𝑟 )1≤𝑟,𝑗≤𝑛 .

Note that ((−1) 𝑗−𝑖𝑒 𝑗−𝑖 )𝑖 𝑗 = (ℎ𝑖−𝑗 )−1𝑖 𝑗 (see Corollary 1.13). Consequently, one can manipulate the two
identities above to write

(𝑥_𝑖+𝑛−𝑖
𝑗

)1≤𝑖, 𝑗≤𝑛 = (ℎ_𝑖+𝑝−𝑖 )1≤𝑖,𝑝≤𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 )1≤𝑝,𝑞≤𝑛 (𝑥
𝑛−𝑞
𝑗
)1≤𝑞,𝑗≤𝑛 .

Taking determinants shows the result (Theorem 7.1.A), since ((−1)𝑞−𝑝𝑒𝑞−𝑝 )𝑝,𝑞 is a lower triangular
matrix with 1s in the diagonal.

Note that, in particular, we have shown that 𝑥𝑙𝑗 may be expressed as the following vector-matrix-
vector product,

𝑥𝑙𝑗 = (ℎ𝑙−𝑛+𝑝 (𝑋 ))1≤𝑝≤𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 (𝑋 ))1≤𝑝,𝑞≤𝑛 (𝑥
𝑛−𝑞
𝑗
)1≤𝑞≤𝑛 . (7.3)

The type C formula

In a similar fashion, we now show the formula for type C. For any 𝑗 = 1, ..., 𝑛 and any 𝑝 ∈ N0, let 𝑧𝑝𝑗
denote the polynomial 𝑥𝑝

𝑗
− 𝑥−𝑝

𝑗
. Every symmetric polynomial in this section is assumed to be in the

alphabet 𝑋 . We want to show

det(𝑧_𝑖+𝑛−𝑖+1
𝑗

)1≤𝑖, 𝑗≤𝑛
det(𝑧𝑛−𝑖+1

𝑗
)1≤𝑖, 𝑗≤𝑛

= det(ℎ_𝑖−𝑖+1 | ℎ_𝑖−𝑖+1+𝑗 + ℎ_𝑖−𝑖+1−𝑗 )1≤𝑖, 𝑗≤𝑛

The result will fall from the following lemma.

Lemma 7.4. For any 𝑙 ≥ 0, 𝑗 ∈ [𝑛], we can write 𝑧𝑙𝑗 as the following vector-matrix-vector product,

𝑧𝑙𝑗 = (ℎ𝑙−𝑛 | ℎ𝑙−𝑛+𝑝 + ℎ𝑙−𝑛−𝑝 )1≤𝑝≤𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 )1≤𝑝,𝑞≤𝑛 (𝑧
𝑛+1−𝑞
𝑗

)1≤𝑞≤𝑛,

where (𝑎1 | 𝑎𝑝 )1≤𝑝≤𝑛 denotes (𝑎1, 𝑎2, ..., 𝑎𝑛).

Indeed, this allows us to write (𝑧_𝑖+𝑛−𝑖+1
𝑗

)1≤𝑖, 𝑗≤𝑛 as

(ℎ_𝑖−𝑖+1 | ℎ_𝑖−𝑖+1+𝑝 + ℎ_𝑖−𝑖+1−𝑝 )1≤𝑖,𝑝≤𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 )1≤𝑝,𝑞≤𝑛 (𝑧
𝑛−𝑞+1
𝑗

)1≤𝑞,𝑗≤𝑛,

and taking determinants gives the result (Theorem 7.1.C), as before.
So it only remains to show the lemma.
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Proof of Lemma 7.4. We use Equation (7.3) but in the alphabet 𝑋 = 𝑥1 + · · · + 𝑥𝑛 + 𝑥−1𝑛 + · · · + 𝑥−11 to get

𝑥𝑙𝑗 = (ℎ𝑙−2𝑛+𝑝 (𝑋 ))1≤𝑝≤2𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 (𝑋 ))1≤𝑝,𝑞≤2𝑛 (𝑥
2𝑛−𝑞
𝑗
)1≤𝑞≤2𝑛 and

𝑥−𝑙𝑗 = (ℎ𝑙−2𝑛+𝑝 (𝑋 ))1≤𝑝≤2𝑛 ((−1)𝑞−𝑝𝑒𝑞−𝑝 (𝑋 ))1≤𝑝,𝑞≤2𝑛 (𝑥𝑞−2𝑛𝑗
)1≤𝑞≤2𝑛 .

Subtracting both expressions gives

𝑧𝑙𝑗 =

2𝑛∑︁
𝑝=1

ℎ𝑙−2𝑛+𝑝 (𝑋 )𝑆𝑝 , where 𝑆𝑝 =

2𝑛∑︁
𝑞=𝑝

(−1)𝑞−𝑝𝑒𝑞−𝑝 (𝑋 )𝑧2𝑛−𝑞𝑗
. (7.5)

Fix 𝑝 ∈ [2𝑛]. Lemma 7.2 for the alphabet 𝑋 and an arbitrary 𝑑 ≫ 2𝑛, gives

𝑥𝑑𝑗 − 𝑒1 (𝑋 )𝑥𝑑−1𝑗 + 𝑒2 (𝑋 )𝑥𝑑−2𝑗 − · · · + 𝑒2𝑛 (𝑋 )𝑥𝑑−2𝑛𝑗 = 0.

Multiplying by 𝑥𝑝−𝑑
𝑗

and isolating terms then results in

𝑥
𝑝

𝑗
− 𝑒1 (𝑋 )𝑥𝑝−1𝑗

+ 𝑒2 (𝑋 )𝑥𝑝−2𝑗
− · · · + (−1)𝑝𝑒𝑝𝑥0𝑗 = (−1)𝑝+1𝑒𝑝+1 (𝑋 )𝑥−1𝑗 + · · · − 𝑒2𝑛 (𝑋 )𝑥

𝑝−2𝑛
𝑗

.

This same expression but for 𝑗 = 2𝑛 + 1 − 𝑗 (that is, for the variable 𝑥−1𝑗 ) is

𝑥
−𝑝
𝑗
− 𝑒1 (𝑋 )𝑥1−𝑝𝑗

+ 𝑒2 (𝑋 )𝑥2−𝑝𝑗
− · · · + (−1)𝑝𝑒𝑝𝑥0𝑗 = (−1)𝑝+1𝑒𝑝+1 (𝑋 )𝑥1𝑗 + · · · − 𝑒2𝑛 (𝑋 )𝑥

2𝑛−𝑝
𝑗

.

Subtracting both identities gives

= 𝑆2𝑛−𝑝︷                                                               ︸︸                                                               ︷
𝑧
𝑝

𝑗
− 𝑒1 (𝑋 )𝑧𝑝−1𝑗

+ 𝑒2 (𝑋 )𝑧𝑝−2𝑗
− · · · + (−1)𝑝−1𝑒𝑝−1𝑧1𝑗

= (−1)𝑝𝑒𝑝+1 (𝑋 )𝑧1𝑗 + · · · + 𝑒2𝑛 (𝑋 )𝑧
2𝑛−𝑝
𝑗

.

(7.6)

We use the following result.
Claim. (−1)𝑝𝑒𝑝 (𝑋 ) = (−1)2𝑛−𝑝𝑒2𝑛−𝑝 (𝑋 ).

Proof of claim. We have
∑
𝑑≥0 𝑒𝑑 (𝑋 )𝑡𝑑 = 𝐸 (−𝑡) (𝑋 ) = ∏

𝑖∈[𝑛] (1 − 𝑥𝑖𝑡) (1 − 𝑥−1𝑖 𝑡) = ∏
𝑖∈[𝑛] (1 − (𝑥𝑖 +

𝑥−1𝑖 )𝑡 + 𝑡2). In particular, we can write 𝐸 (−𝑡) (𝑋 ) = 𝑡2𝑛𝐸 (−𝑡−1) (𝑋 ).
Let us denote by [𝑎]𝑃 (𝑡) the coefficient of 𝑡𝑎 in the polynomial 𝑃 (𝑡). We have

[2𝑛 − 𝑝]𝐸 (−𝑡) (𝑋 ) = [2𝑛 − 𝑝]𝑡2𝑛𝐸 (−𝑡−1) (𝑋 ) = [−𝑝]𝐸 (−𝑡−1) (𝑋 ) = [𝑝]𝐸 (−𝑡) (𝑋 ). □

It follows from the claim that the right hand side of Equation (7.6) is 𝑆𝑝 and thus we have 𝑆𝑝 = 𝑆2𝑛−𝑝 .
Note that we can also write the left hand side as 𝑅𝑛−𝑝+1, where 𝑅𝑝 :=

∑𝑛
𝑞=𝑝 (−1)𝑞−𝑝𝑒𝑞−𝑝 (𝑋 )𝑧

𝑛+1−𝑞
𝑗

.
We bring back Equation (7.5) to obtain

𝑧𝑙𝑗 =

2𝑛∑︁
𝑝=1

ℎ𝑙−2𝑛+𝑝 (𝑋 )𝑆𝑝

= ℎ𝑙−2𝑛+1𝑆1︸     ︷︷     ︸
= 0 by 7.2

+
(
𝑛∑︁
𝑝=2

ℎ𝑙−2𝑛+𝑝 (𝑋 )𝑆𝑝

)
+ ℎ𝑙−𝑛𝑆𝑛+1 +

(
2𝑛∑︁

𝑝=𝑛+2
ℎ𝑙−2𝑛+𝑝 (𝑋 )𝑆𝑝

)

=

(
𝑛∑︁
𝑝=2

ℎ𝑙−2𝑛+𝑝 (𝑋 )𝑆𝑝

)
+ ℎ𝑙−𝑛𝑆𝑛+1 +

(
𝑛∑︁
𝑝=2

ℎ𝑙−2𝑛−𝑝 (𝑋 )𝑆2𝑛−𝑝

)
.
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And now, since 𝑆𝑝 = 𝑆2𝑛−𝑝 = 𝑅𝑛−(𝑝−1) , a reparametrization gives

𝑧𝑙𝑗 = ℎ𝑙−𝑛𝑅0 +
𝑛−2∑︁
𝑝=0

(ℎ𝑙−𝑛+𝑝 (𝑋 ) + ℎ𝑙−𝑛−𝑝 (𝑋 ))𝑅𝑝+1.

This is exactly the formula we were seeking. ■

The type B formula

Finally, we turn our attention to the type B formula. We let 𝑧𝑝
𝑗
:= 𝑥

𝑝

𝑗
− 𝑥−𝑝

𝑗
for 𝑗 = 1, ..., 𝑛 and 𝑝 ∈ 1

2N0.
Every symmetric polynomial in this section is assumed to be in the alphabet 𝑋 + 1. We remind the
reader that we only treat spinless irreducible representations (those indexed by partitions, as opposed
to half-partitions). We want to show Theorem 7.1.B,

det(𝑧_𝑖+𝑛−𝑖+1/2
𝑗

)1≤𝑖, 𝑗≤𝑛
det(𝑧𝑛−𝑖+1/2

𝑗
)1≤𝑖, 𝑗≤𝑛

= det(ℎ_𝑖−𝑖+1 | ℎ_𝑖−𝑖+1+𝑗 + ℎ_𝑖−𝑖+1−𝑗 )1≤𝑖, 𝑗≤𝑛 .

Note that 𝑧𝑝
𝑗
· (𝑥1/2

𝑗
+𝑥−1/2

𝑗
) = 𝑧𝑝+1/2

𝑗
+𝑧𝑝−1/2

𝑗
. Thus, starting from the left hand size of the above equation,

one may multiply numerator and denominator by
∏𝑛

𝑗=1 (𝑥
1/2
𝑗
+ 𝑥−1/2

𝑗
) to obtain

det(𝑧_𝑖+𝑛−𝑖+1/2
𝑗

)1≤𝑖, 𝑗≤𝑛
det(𝑧𝑛−𝑖+1/2

𝑗
)1≤𝑖, 𝑗≤𝑛

=
det(𝑧_𝑖+𝑛−𝑖+1

𝑗
+ 𝑧_𝑖+𝑛−𝑖

𝑗
)1≤𝑖, 𝑗≤𝑛

det(𝑧𝑛−𝑖+1
𝑗

+ 𝑧𝑛−𝑖
𝑗
)1≤𝑖, 𝑗≤𝑛

=
det(𝑧_𝑖+𝑛−𝑖+1

𝑗
+ 𝑧_𝑖+𝑛−𝑖

𝑗
)1≤𝑖, 𝑗≤𝑛

det(𝑧𝑛−𝑖+1
𝑗
)1≤𝑖, 𝑗≤𝑛

.

To see the second equality, note that the matrix (𝑧𝑛−𝑖+1𝑗 + 𝑧𝑛−𝑖𝑗 )𝑖 𝑗 may be obtained from the Vander-
monde matrix (𝑧𝑛−𝑖+1𝑗 )𝑖 𝑗 by performing row operations. (Note also 𝑧0𝑗 = 0.) Therefore, it has the same
determinant.

We now use Lemma 7.4 and the formula ℎ𝑘 (𝑋 + 1) = ℎ𝑘 (𝑋 ) + ℎ𝑘−1 (𝑋 ) (see also Proposition 4.7) to
conclude.



Chapter 8

Other combinatorial models for type
C

In this chapter we survey the different models for symplectic tableaux and the way the different models
are related.

At first glance, the most noticeable difference between the models is the alphabet that they use.
Throughout this chapter, we will mainly use the following four alphabets:
A = {1 < 1′ < 2 < 2′ < · · · < 𝑛 < 𝑛′},

B = {𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛},

C = {1 < 2 < · · · < 𝑛 < 𝑛′ < · · · < 2′ < 1′}, and

D = {1 < 2 < · · · < 2𝑛}.
We refer to any alphabet whose underlying set is {1, 2, ..., 𝑛, 1′, 2′, ..., 𝑛′} as a symplectic alphabet. For
instance,A,B, and C above are symplectic. Given a symplectic alphabetX, we writeX′ for the alphabet
in which primed and non-primed letters are exchanged. By relabeling of a tableau 𝑇 : [_] → X from
an alphabet X to an alphabet Y we mean postcomposition with the order-preserving map sending X
to Y. We denote this by 𝑇Y .

We will, in total, deal with four families of tableaux: King’s, De Concini’s, Kashiwara’s, and split
tableaux. King’s tableaux were already defined in Definition 4.1. We now define De Concini’s. But first,
we need to introduce some terminology.
Definition 8.1. We say that 𝑇 is a column tableau if 𝑇 is of shape (1𝑘 ) for some 𝑘 . Let 𝑇 be a semis-
tandard column tableau in the alphabet A = {1 < 1′ < 2 < 2′ < · · · < 𝑛 < 𝑛′}. We say 𝑇 is admissible
if 𝑇 (𝑖, 𝑗) ≥ 𝑖 . More generally, we say a column tableau 𝑇 in a symplectic alphabet X is admissible if a
reordering of its entries produces an admissible semistandard column tableau in A.

In other words, a column tableau 𝑇 in a symplectic alphabet X is admissible if

#𝑇 −1 ({1, 1′, ..., 𝑖, 𝑖 ′}) ≤ 𝑖

for all 𝑖 . Note that with this definition, King’s tableaux are exactly semistandard tableaux in the alphabet
A in which every column is admissible.

Fix a symplectic alphabet X. In what follows, we identify a semistandard column tableaux 𝑇 in
X with the pair of sets (𝐴, 𝐷), where 𝐴 ⊆ [𝑛] is the set {𝑎 : 𝑎′ ∈ im𝑇 }, and 𝐷 ⊆ [𝑛] is the set
{𝑑 : 𝑑 ∈ im𝑇 }. This completely determines 𝑇 .

42
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Definition 8.2 (Split version in B). Let 𝑇 = (𝐴, 𝐷) be an admissible semistandard column tableau in
the alphabet B = {𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛}. The split version of 𝑇 is the pair (𝑃,𝑄) of
semistandard column tableaux in B which we obtain as a result of the following algorithm:

• set 𝐽 = ∅

• for 𝑖 ranging over 𝐴 ∩ 𝐷 in descending order:

– set 𝑗 ∈ [𝑛] to be the greatest number which is not in𝐴∪𝐷 , and not in 𝐽 , and is smaller than
𝑖

– add 𝑗 to 𝐽

• return 𝑃 = (𝐴, (𝐷 −𝐴) ∪ 𝐽 ) and 𝑄 = ((𝐴 − 𝐷) ∪ 𝐽 , 𝐷).

We identify the pair (𝑃,𝑄) with a tableau with two columns. Diagrammatically, split is the map
(
𝐴
𝐷

)
↦→(

𝐴 𝐵
𝐶 𝐷

)
, where 𝐵 := (𝐷 −𝐴) ∪ 𝐽 , 𝐶 := (𝐴 − 𝐷) ∪ 𝐽 , and 𝐽 is defined via the above algorithm.

The split version of a tableau 𝑇 : [_] → B of shape _ is a tableau of shape (2_1, 2_2, ...) in which
each column is exchanged for its split version. We denote this by split(𝑇 ). More generally, the split
version split(𝑇 ) of a tableau 𝑇 : [_] → X is the relabeling split(𝑇B)X .

Example 8.3. Let𝑇 = ({3, 4}, {2, 3}) denote an admissible semistandard column tableaux in the alphabet
B. We have 3 ∈ {3, 4} ∩ {2, 3}, and thus we find 𝑗 = 1 which is not in {3, 4}, nor in {2, 3} and it is smaller
than 3.

4′

3′

2

3

↦→

4′ 4′

3′ 1′

1 2

2 3

.

Wenote that it is useful to think of𝐴 and𝐵 to be in bijection: elements in𝐴−𝐷 are sent to themselves,
and each 𝑖 ∈ 𝐴 ∩ 𝐷 is sent to their corresponding 𝑗 as in the loop of the algorithm. Similarly, 𝐷 and 𝐶
are in bijection.

Example 8.4 (Example 8.3 contd.). We have a bijection 𝐴 → 𝐵 given by 3 ↦→ 1 and 4 ↦→ 4. We have a
bijection 𝐷 → 𝐶 given by 2 ↦→ 2 and 3 ↦→ 1.

We point out some properties about the algorithm that are immediate from its definition. If 𝑇 is a
column tableau, then split(𝑇 ) is a semistandard tableau. Moreover, if an entry 𝑎 is found in column 1
of split(𝑇 ), then

• 𝑎′ is not in column 1, and

• exactly one of 𝑎 and 𝑎′ is in column 2.

A similar analysis can be done for an entry 𝑎′ in column 1. Finally, we can break split(𝑇 ) into blocks
in which, for some minimum 𝑎 and some maximum 𝑏, all numbers 𝑐 ∈ [𝑎, 𝑏] appear (as either primed
or non-primed entries) in the block, exactly once in each column. This becomes apparent in the next
example.

Example 8.5. Let𝑇 = ({3, 4, 6, 8, 9, 11}, {4, 5, 6, 9}) be a column tableau inB. Then, split(𝑇 ) =
(
({3, 4, 6, 8,

9, 11}, {1, 2, 5, 7}), ({1, 2, 3, 7, 8, 11}, {4, 5, 6, 9})
)
. We let arrows denote the bijections 𝐴 → 𝐵 and 𝐷 → 𝐶

in the diagram below. We divide the split tableau into three blocks 𝑋 ∪ 𝑋 ′ (corresponding to the interval
[1, 6]), 𝑌 ∪𝑌 ′ (corresponding to the interval [7, 9]), and 𝑍 ∪𝑍 ′ (corresponding to the interval [11, 11]). In
this case, 𝑍 is empty.
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11′

9′

8′

6′

4′

3′

4

5

6

9

↦→

11′11′

9′ 8′

8′ 7′

6′ 3′

4′ 2′

3′ 1′

1 4

2 5

5 6

7 9

𝑋 ′

𝑋

𝑌 ′

𝑌

𝑍 ′

7 9

5 6

2 5

1 4

3′ 1′
4′ 2′
6′ 3′
8′ 7′
9′ 8′
11′ 11′

Definition 8.6. A De Concini (symplectic) tableau is a semistandard tableau 𝑇 in the alphabet B =

{𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛} such that each column of𝑇 is admissible, and such that the split
version of 𝑇 is semistandard.

Example 8.7. The following is a De Cocini tableau and its split version.

4′ 4′ 1

3′ 1 4

3 4

↦→
4′ 4′

3′ 2′

2 3

4′ 3′

1 1

3 4

1 1

4 4

We can similarly introduce the notions of coadmissible column and cosplit version. A column
tableau is called coadmissible if after the relabeling 𝑖 ↦→ 𝑛+1−𝑖 (and 𝑖 ′ ↦→ (𝑛+1−𝑖) ′), the column tableau
becomes admissible. That is, if #𝑇 −1 ({𝑛, 𝑛′, ..., 𝑖 +1, 𝑖 +1′}) ≤ 𝑖 . On the other hand, if one writes the
split algorithm diagrammatically as

(
𝐴
𝐷

)
↦→

(
𝐴 𝐵
𝐶 𝐷

)
, then the cosplit map can be written as

(
𝐵
𝐶

)
↦→

(
𝐴 𝐵
𝐶 𝐷

)
.

Explicitly:

Definition 8.8 (Cosplit version in B). If 𝑇 = (𝐵,𝐶) is a coadmissible semistandard column tableau
in the alphabet B, the cosplit version cosplit(𝑇 ) of 𝑇 is the pair (𝑃,𝑄) resulting from the following
algorithm:

• set 𝐽 = ∅

• for 𝑖 ranging over 𝐵 ∩𝐶 in ascending order:

– set 𝑗 ∈ [𝑛] to be the smallest number which is not in 𝐵 ∪𝐶 , not in 𝐽 , and is greater than 𝑖
– add 𝑗 to 𝐽

• return 𝑃 = ((𝐵 −𝐶) ∪ 𝐽 ,𝐶) and 𝑄 = (𝐵, (𝐶 − 𝐵) ∪ 𝐽 ).

See [She99] for more information. Again, the cosplit version of a tableau in B is created exchanging
each column for its cosplit version, and the cosplit version of a tableau 𝑇 : [_] → X is cosplit(𝑇B)X .

Note 8.9. If the split version of𝑇 coincides with the cosplit version of𝑄 , then the weight of𝑇 is the same
as the weight of 𝑄 . This is clear, since they only differ in pairs of (𝑖, 𝑖 ′) entries.

The tableaux above were introduced in [DeC79]. A bijection between King’s tableaux relabeled to
A ′ = {1′ < 1 < · · · < 𝑛′ < 𝑛} and De Concini’s tableaux is given in [She99]. We present it at the end
of this chapter.

We now turn our attention to a third model of symplectic tableaux.

Definition 8.10. A Kashiwara (symplectic) tableau is a semistandard tableau 𝑇 in the alphabet
C = {1 < · · · < 𝑛 < 𝑛′ < · · · < 1′} such that
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(K1) if 𝑎 and 𝑎′ appear in the same column, say 𝑇 (𝑟, 𝑐) = 𝑎, 𝑇 (𝑠, 𝑐) = 𝑎′, then (𝑠 − 𝑟 ) + 𝑎 is strictly
greater than the length of column 𝑇 (−, 𝑐), and

(K2) if two adjacent columns of 𝑇 have one of the following four configurations:

𝑝 → 𝑎 𝑎 𝑎 𝑎 𝑎
𝑞 → 𝑏 𝑏
𝑟 → 𝑏 ′ 𝑏 ′

𝑠 → 𝑎′ 𝑎′ 𝑎′ 𝑎′ 𝑎′

(by which we mean that e.g. the first 𝑎 entry in the first column is at row number 𝑝 , etc.), then
(𝑞 − 𝑝) + (𝑠 − 𝑟 ) < (𝑏 −𝑎). In particular, the third and fourth configurations are impossible. Here,
𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 and 𝑎 ≤ 𝑏.

Note that the third and fourth conditions of (K2) are redundant, but included since they prove to be
useful in later proofs.

It is often useful to think of a reformulation of (K2). The proof of this statement is included in
Appendix C.

Lemma 8.11. Let 𝑇 be a tableau in the alphabet C satisfying (K1). Then, 𝑇 satisfies (K2) if and only if it
satisfies (K2’);

(K2’) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎 𝑎
𝑞 → 𝑏 𝑏
𝑟 → 𝑐 ′ 𝑐 ′

𝑠 → 𝑑 ′ 𝑑 ′

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < max{𝑏, 𝑐} −min{𝑎, 𝑑}. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 , 𝑎 ≤ 𝑏, and 𝑐 ≤ 𝑑 .

As we will see, De Concini’s and Kashiwara’s tableaux are closely related. We give a bijection as a
corollary to the following theorem, whose proof is postponed to Appendix C.

Theorem 8.12. Let 𝑇 be a semistandard tableau in the alphabet C = {1 < · · · < 𝑛 < 𝑛′ < · · · < 1′}. A
column of𝑇 verifies (K1) if and only if it is admissible. The tableau𝑇 verifies (K2) if and only if the cosplit
version of 𝑇 is semistandard.

Note 8.13. A semistandard column tableau𝑇 in C is admissible if and only if𝑇B is coadmissible. Therefore,
a tableau 𝑇 : [_] → C is a Kashiwara tableau if and only if each column of 𝑇B is coadmissible and the
cosplit version of 𝑇B is semistandard.

It will be nevertheless useful to have a way of computing the cosplit version of a tableau in C directly.

Definition 8.14 (Cosplit in C). Let𝑇 : [_] → C = {1 < · · · < 𝑛 < 𝑛′ < · · · 1′} be a column tableau, which
we represent as a pair (𝐵,𝐶) of subsets of [𝑛] where 𝐵 = {𝑖 : 𝑖 ∈ im𝑇 } and 𝐶 = {𝑖 : 𝑖 ′ ∈ im𝑇 }. Assume
𝑇 to be admissible. The cosplit version cosplit(𝑇 ) of𝑇 is the pair (𝑃,𝑄) of column tableaux resulting from
the following algorithm:
• set 𝐽 = ∅
• for 𝑖 ranging over 𝐵 ∩𝐶 in ascending order:

– set 𝑗 ∈ [𝑛] to be the greatest number which is not in 𝐵 ∪𝐶 , not in 𝐽 , and is smaller than 𝑖
– add 𝑗 to 𝐽

• return 𝑃 = ((𝐵 −𝐶) ∪ 𝐽 ,𝐶) and 𝑄 = (𝐵, (𝐶 − 𝐵) ∪ 𝐽 ).

If 𝑇 : [_] → B is a De Concini tableau, we say 𝑇C is a De ConciniC tableau.
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Corollary 8.15. The map cosplit−1 ◦ split gives a weight-preserving bijection between De ConciniC
tableaux and Kashiwara tableaux. ■

Inspired by this bijection, we present two novel and different characterization of DeConcini tableaux.
See Appendix C for proofs.

Proposition 8.16. Let𝑇 be a tableau in the alphabet B such that each column is admissible. Then,𝑇 is a
De Concini tableau if and only if it satisfies (DC’);

(DC’) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎′ 𝑎′

𝑞 → 𝑏 ′ 𝑏 ′
𝑟 → 𝑐 𝑐
𝑠 → 𝑑 𝑑

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < max{𝑎, 𝑑} −min{𝑏, 𝑐}. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 , 𝑎 ≤ 𝑏, and 𝑐 ≤ 𝑑 .

Lemma 8.17. Let 𝑇 be a tableau in the alphabet B such that each column is admissible. Then, 𝑇 satisfies
(DC’) if and only if it satisfies (DC);

(DC) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎′ 𝑎′

𝑞 → 𝑏 ′ 𝑏 ′

𝑟 → 𝑏 𝑏
𝑠 → 𝑎 𝑎

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < 𝑎 − 𝑏. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 .

Note 8.18. In the literature, e.g. in [Kra98, Lit90, LMS79], some authors make the split version of the
De Concini’s tableaux their main object of study. (Or, the cosplit version of Kashiwara’s tableaux.) The
preferred alphabet in [Kra98] isD = {1 < 2 < · · · < 2𝑛}. We call these split tableaux. We refer to [Kra98,
Def. A3.1] for a precise definition.

The advantage of Kashiwara’s and De Concini’s tableaux over King’s tableaux is that we have a
description of the crystal structure on them. See Chapter 9.

Summing up, we have the following bijections, where vertical arrows are just relabeling.

split tableaux
relabeled to C

Kashiwara’s tableaux
in the alphabet C

King’s tableaux
in the alphabet A

split tableaux
in the alphabet D

King’s tableaux
relabeled to A′

De Concini’s tableaux
in the alphabet B

split tableaux
relabeled to B

split

Sheats cosplit

In particular, the implementation of the composite allows one to compute the effect of crystal operators
on any of these sets of tableaux in SageMath. See Appendix D.

The composite bijection from King’s tableaux to De Concini’s tableaux isweight-inverting; that is,
a tableau with weight 𝑥𝑖11 𝑥

𝑖2
2 · · · 𝑥

𝑖𝑛
𝑛 gets mapped to a tableau with weight 𝑥−𝑖11 𝑥

−𝑖2
2 · · · 𝑥

−𝑖𝑛
𝑛 . The compos-

ite bijection from De Concini’s tableaux to Kashiwara’s tableaux isweight-reversing; that is, a tableau
with weight 𝑥𝑖11 𝑥

𝑖2
2 · · · 𝑥

𝑖𝑛
𝑛 gets mapped to a tableau with weight 𝑥−𝑖𝑛1 𝑥

−𝑖𝑛−1
2 · · · 𝑥−𝑖1𝑛 .
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Example 8.19. Here is an example of each map in the above diagram.

1 1

2 3

3′ 2′

2 2

3 3

1′ 1′
C

1 2

3 3

3′ 1′

1 2

3 3

3′ 3′

1 1

2 3

4 5

2 2

3 3

6 6

1′ 2′

3′ 3′

3 3
A′

3′ 2′

2′ 1′

2 3

3′ 3′

2′ 1′

1 2

2′ 2′

1′ 1′

3 3
B

We will now describe Sheats’ bijection and its inverse. It is based on a modification of the classical
jeu de taquin algorithm [Sag01]. We present the bijections algorithmically. A detailed and careful de-
scription of these maps is an arduous task and beyond the scope of this short survey. We thus refer the
interested reader to in [She99]. We introduce some useful definitions first.

Definition 8.20. Let𝑇 be a tableau𝑇 : [_] → X and let 𝑐 ∈ [_] be a cell. The puncture of𝑇 at 𝑐 is the
pair (𝑇 𝑐 , 𝑐) where 𝑇 𝑐 is the restriction of 𝑇 to [_] − 𝑐 . When representing tableaux as fillings of Young
diagrams, we denote the puncture by •.

A puncture (𝑇 𝑐 , 𝑐) of a De Concini column tableau 𝑇 at 𝑐 = (𝑟, 1), can be represented as a triple
(𝐴, 𝐷; 𝑐) by letting 𝐴 := {𝑎 : 𝑎′ ∈ im𝑇 𝑐 } and 𝐷 := {𝑑 : 𝑑 ∈ im𝑇 𝑐 }. That is, if 𝑇 𝑐 = (𝐴, 𝐷),
then (𝑇 𝑐 , 𝑐) = (𝐴, 𝐷; 𝑐). This allows us to define the split version of (𝑇 𝑐 , (𝑟, 1)) as the double puncture
((split(𝑇 𝑐 ), (𝑟, 1)), (𝑟, 2)). Therefore, the split version of a puncture (𝑇 𝑐 , 𝑐) of a De Concini tableau is
defined to be the double puncture of the tableau of shape (2_1, 2_2, ...) in which each column of (𝑇 𝑐 , 𝑐)
is exchanged for its split version.

Given a King’s tableau𝑇 , wewill refer to𝑇A′ as a KingA′ tableau. Starting from aDeConcini tableau,
Sheats’ bijection produces a KingA′ tableau by “moving” each primed entry using a modified version
of Schützenberger’s jeu de taquin algorithm [Sag01, Section 3.7] until it verifies the semistandard rules
with respect to the alphabetA ′. In its intermediate stages, we get tableaux with a KingA′ part and a De
Concini part. We refer to these as mixed tableaux in what comes.

Definition 8.21 (Sheats’ bijection). To initialize the algorithm, let𝑇 be a De Concini tableau (a mixed
tableau with an empty KingA′ part).

Given a mixed tableau, let 𝑖 ′ be the smallest value in its De Concini part (with respect to the order
induced by B). We add every entry greater or equal to 𝑖 with respect to ≤A′ to the King part. Let 𝑐 ∈ [_]
be the cell of the right-most instance of 𝑖 ′ in the De Concini part. Consider the puncture (𝑇 𝑐 , 𝑐).

We now perform jeu de taquin on the double puncture ((split(𝑇 𝑐 ), 𝑐 ′), 𝑐 ′′). At any given step of the
jeu de taquin algorithm, the punctures will fall into the following configuration, where 𝑎 and 𝑏 might
not exist.

• •
∗ 𝑏

𝑎 ∗

If both 𝑎 and 𝑏 do not exist, then stop for now. Otherwise, if 𝑎 doesn’t exist, then we perform a down
slide (defined below), and if 𝑏 doesn’t exists, then we perform a right slide. Finally, if both exist, we
compare 𝑎 and 𝑏. If 𝑎 ≤B 𝑏 we perform a down slide and vice versa.
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A down slide is the map that changes

• •
𝑥 𝑏

for 𝑥 𝑏

• •

and leaves the rest of the tableau unchanged. To describe a right slide, consider the four columns
involved in the above configuration. (These form semistandard columns with respect to B.) We let
them to be denoted diagrammatically as(

𝐴1 𝐵1

𝐶1 𝐷1

)
and

(
𝐴2 𝐵2

𝐶2 𝐷2

)
.

If 𝑟 is a primed entry, then a right slide involves transferring 𝑟 from𝐴2 to 𝐵1, and then changing the left
columns for the cosplit version of

(𝐵1∪{𝑎}
𝐶1

)
, and the right columns for the split version of

(𝐴2−{𝑎}
𝐷2

)
. If 𝑟 is

non-primed, then they are changed for the split version of
( 𝐴1

𝐷1∪{𝑎}
)
and the cosplit version of

( 𝐵2

𝐶2−{𝑎}
)
,

respectively. In both cases, the punctures are later placed in the same row but on the right two columns.
We slide the punctures as long as we can. Once we are done, we consider the unsplit version of the

current tableau and add back its KingA′ part. We place 𝑖′ where the puncture is, to its KingA′ part. We
have produced a mixed tableau that has (at least) one more entry on its KingA′ part and one less entry
on its De Concini part.

Now we look for the next entry to move and repeat the process until the tableau is semistandard
with respect to A ′.

It is non-obvious that the map is well-defined (in particular, that the image is a KingA′ tableau). It is
also non-obvious that jeu the taquin is weight-inverting. We refer to [She99] for proofs of these facts.

Example 8.22. We hope this example helps understanding this complicated definition. We let the KingA′
part of the tableau to be yellow shaded.

We start with the lowest entry with respect to ≤B , which is 3′.

3′ 1′ 1′

2′ 2

1 3

↦→
• 1′ 1′

2′ 2

1 3

We consider only the De Concini part to perform jeu de taquin. In this case, two down slides are performed.

• 1′ 1′

2′ 2

1

split
↦−−−−→

• •
2′ 2′

1 1

1′ 1′

2 2

1′ 1′
down↦−−−−→

2′ 2′

• •
1 1

1′ 1′

2 2

1′ 1′

down↦−−−−→
2′ 2′

1 1

• •

1′ 1′

2 2

1′ 1′
split−1
↦−−−−−−−→

2′ 1′ 1′

1 2

•

And now restore the original tableau, remove the puncture, and add all necessary entries to its King part.
We pick the next entry to move too.

2′ 1′ 1′

1 2

3’⃝ 3

↦→
• 1′ 1′

1 2

3′ 3

We focus again on the De Concini part to perform jeu de taquin: we perform two right slides.

• 1′ 1′

1

split
↦−−−−→

• •
1 1

1′ 1′ 1′ 1′ right
↦−−−−→

2′ 1′

1 2

• • 1′ 1′

right
↦−−−−→

2′ 1′

1 2

1′ 1′ • • split−1
↦−−−−−−−→

2′ 1′ •
2

Upon restoring the tableau, the entry to move is again a 2′. One slide later, we are done.
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2′ 1′ 2’⃝
2 2

3′ 3

↦→
• 1′ 2′

2 2

3′ 3

• 1′
split
↦−−−−→ • • 1′ 1′

right
↦−−−−→ 1′ 1′ • •

split−1
↦−−−−−−−→ 1′ •

1′ 2’⃝ 2′

2 2

3′ 3

↦→
1′ 2′ 2′

2 2

3′ 3

Let us now describe the inverse map. Given a KingA′ tableau, we produce a De Concini tableau
by using a modified jeu de taquin algorithm until it verifies the semistandard rules with respect to the
alphabet B. In its intermediate stages, we get mixed tableaux.

Definition 8.23 (Sheats−1). To initialize the algorithm, let 𝑇 be a KingA′ tableau seen as a mixed
tableaux with empty De Concini part.

Given a mixed tableau, let 𝑖 ′ be the smallest value in its King part (with respect to ≤B). Every entry
strictly smaller than 𝑖 ′ (with respect to ≤A′) is added to its De Concini part. We also add the left-most
instance of 𝑖 ′ in the King part to its De Concini part, and puncture the De Concini part at this same
location.

Now we perform jeu de taquin on the split version of the De Concini part of the tableau. It now
has two punctures. At any given step of the jeu de taquin algorithm, the punctures will fall into the
following configuration (where 𝑎 and 𝑏 might not exist).

∗ 𝑎

𝑏 ∗
• •

If both 𝑎 and 𝑏 do not exist, stop for now. If only one of them exist, then we slide the puncture into it (by
performing either an up slide or a left slide, which we define below). If both exist, we compare them. If
𝑎 ≤B 𝑏, then we perform an up slide and vice versa.

An up slide is the inverse of a down slide, described above.
A left slide is the inverse of a right slide, also described above.
We slide the punctures as long as we can. Once we are done, we consider the unsplit version of the

current tableau and add back its KingA′ part. We place 𝑖′ where the puncture is, to its De Concini part.
Importantly, if the column in which we just placed 𝑖′ has an instance of 𝑖 , then it too is to be added
to the De Concini part.

We have produced a mixed tableau that has (at least) one more entry on its De Concini part and one
less entry on its KingA′ part.

Now we look for the next entry to move and repeat the process until the tableau is semistandard
with respect to B.

Example 8.24. Reverse all arrows in Example 8.22.



Chapter 9

A crystal structure on type C
tableaux

Semistandard Young tableaux arise naturally when the representation theory of 𝔰𝔩(𝑛) is studied via
crystal theory; more precisely:
Theorem 9.1. The crystal basis for the finite dimensional irreducible representation 𝐿(_) of 𝔰𝔩(𝑛) with
highest weight _ is canonically identified (as a set) with the set of Far-Eastern readings of semistandard
Young tableaux of shape _. ■

We will introduce below some of the necessary definitions to understand the above statement in
this chapter. More background on crystal bases is given in Chapter 10. The focus of this chapter is to
understand the analogous statement for type C, Theorem 9.10. We will therefore not show the above
statement; the interested reader may adapt our proof below or see [KN94, HK02, SV16].

When studying the representation theory of 𝔰𝔭(2𝑛), Kashiwara’s tableaux arise. However, because
of our conventions (fixed in Chapter 2), which were the natural conventions to take for developing
King’s tableaux, some of our definitions will be slightly awkward. A more elegant development of the
theory is seen in the literature on Kashiwara’s tableaux [KN94, HK02, BS17].

We begin by analyzing the natural representation𝑉 of 𝔰𝔭(2𝑛). This is the representation 𝔰𝔭(2𝑛) →
𝔤𝔩(2𝑛) = 𝔤𝔩(𝑉 ) defined by letting any matrix act by matrix multiplication. (In particular, 𝑉 = C2𝑛 as
vector spaces.)

It is enough to understand this action on a system of generators of the Lie algebra. We gave such a
system in Chapter 2. The only subspaces fixed by any matrix in the Cartan are the coordinate subspaces.
More specifically, the only weight spaces of 𝑉 are 𝑉±𝜖𝑖 for 𝑖 = 1, ..., 𝑛, which are

𝑉𝜖1 = ⟨
©«
1
0
0
...
0

ª®®¬⟩, 𝑉𝜖2 = ⟨
©«
0
1
0
...
0

ª®®¬⟩, ..., 𝑉𝜖𝑛 = ⟨
©«
0
...
1
0
...
0

ª®®®®¬
⟩, 𝑉−𝜖𝑛 = ⟨

©«
0
...
0
1
...
0

ª®®®®¬
⟩, ..., 𝑉−𝜖1 = ⟨

( 0
...
0
1

)
⟩ .

The action of 𝑒𝑖 takes 𝑉𝜖𝑖 to 𝑉𝜖𝑖+1 and 𝑉−𝜖𝑖 to 𝑉−𝜖𝑖−1 , and vanishes on the rest of the weight spaces. On
the other hand, 𝑒0 takes 𝑉−𝜖1 to 𝑉𝜖1 . As usual, 𝑓𝑖 does the opposite of what its corresponding 𝑒𝑖 does.

Example 9.2. Let 𝑛 = 2; that is, we work in 𝔰𝔭(4). Let 𝑣 ∈ C4 be a generic vector. We have

𝑒1 .𝑣 =

(
0
1 0

0
−1 0

) ( 𝑣1
𝑣2
𝑣3
𝑣4

)
=

( 0
𝑣1
0
−𝑣3

)
, 𝑒0 .𝑣 =

(
1

0
0

0

) ( 𝑣1
𝑣2
𝑣3
𝑣4

)
=

( 𝑣4
0
0
0

)
.
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We may draw the following diagram:

𝑓1 𝑓0 𝑓1

𝑒1𝑒0𝑒1

0 𝑉𝜖2 𝑉𝜖1 𝑉−𝜖1 𝑉−𝜖2 0

Each weight space is one dimensional. One may wish to obtain a basis for the representation such
that (1) each basis element is a weight vector, (2) the actions of the different 𝑒𝑖 permute the basis elements
(or act as 0), and (3) the action of 𝑓𝑖 is inverse to that of 𝑒𝑖 in the basis. We call such a basis a crystal
basis. In this chapter, we will assume existence of crystal bases for finite dimensional highest weight
representations of 𝔰𝔭(2𝑛), even though this statement is not totally correct. We make this a bit more
precise in Chapter 10. For a detailed account of the theory of crystal bases, see [HK02] or the original
papers [Kas94, KN94].

If we let 𝑖 be the crystal basis element spanning𝑉𝜖𝑛+1−𝑖 , for 𝑖 = 1, ..., 𝑛, and we let 𝑖′ be the crystal
basis element spanning 𝑉−𝜖𝑛+1−𝑖 , then the crystal graph of the natural representation is

1
1
−→ 2

2
−→ · · · 𝑛−1−−−→ 𝑛

𝑛
−→ 𝑛′

𝑛−1
−−−→ · · · 2′ 1

−→ 1′ ,

where an arrow labeled 𝑖 corresponds to the action of 𝑓𝑛−𝑖 .
Just for completeness, we include the combinatorial definition of a crystal [HK02, BS17].

Definition 9.3. Let 𝔤 be a semisimple Lie algebra. Let Δ = {𝛽1, ..., 𝛽𝑛} be a set of simple roots. Let
𝑋 =

∑𝑛
𝑖=1 Z𝜔𝑖 be the set of integral weights. A(n abstract) crystal is a set 𝐵 together with maps

• 𝑤 : 𝐵 → 𝑋 ,

• Y𝑖 , 𝜑𝑖 : 𝐵 → Z ∪ {−∞}, for 𝑖 = 1, ..., 𝑛,

• 𝐸𝑖 , 𝐹𝑖 : 𝐵 → 𝐵 ∪ {0}, for 𝑖 = 1, ..., 𝑛,

satisfying the following axioms:

(C1) 𝜑𝑖 (𝑏) = Y𝑖 (𝑏) + ⟨𝛽∨𝑖 ,𝑤 (𝑏)⟩ for all 𝑖 = 1, ..., 𝑛.

(C2) 𝑤 (𝐸𝑖𝑏) = 𝑤 (𝑏) + 𝛽𝑖 , 𝑤 (𝐹𝑖𝑏) = 𝑤 (𝑏) − 𝛽𝑖 , whenever 𝐸𝑖𝑏 (resp. 𝐹𝑖𝑏) is in 𝐵.

(C3) Y𝑖 (𝐸𝑖𝑏) = Y𝑖 (𝑏) − 1, 𝜑𝑖 (𝐹𝑖𝑏) = 𝜑𝑖 (𝑏) − 1, whenever 𝐸𝑖𝑏 is in 𝐵,
𝜑𝑖 (𝐸𝑖𝑏) = 𝜑𝑖 (𝑏) + 1, Y𝑖 (𝐹𝑖𝑏) = Y𝑖 (𝑏) + 1, whenever 𝐹𝑖𝑏 is in 𝐵.

(C4) 𝐹𝑖𝑎 = 𝑏 if and only if 𝐸𝑖𝑏 = 𝑎, for all 𝑎, 𝑏 ∈ 𝐵, for all 𝑖 = 1, ..., 𝑛.

(C5) if 𝜑𝑖 (𝑏) = −∞ for some 𝑏 ∈ 𝐵 then 𝐸𝑖𝑏 = 0 = 𝐹𝑖𝑏, and Y𝑖 (𝑏) = −∞.

(Note that 𝜑𝑖 is completely determined by Y𝑖 and 𝑤 .) The crystal is furthermore called seminormal if
one can write

Y𝑖 (𝑏) = max{𝑘 ≥ 0 : 𝐸𝑘𝑖 𝑏 ∈ 𝐵} and 𝜑𝑖 (𝑏) = max{𝑘 ≥ 0 : 𝐹𝑘𝑖 𝑏 ∈ 𝐵}.

The crystal graph is the weighted digraph 𝐺 with vertex set 𝐵 and an edge 𝑎 → 𝑏 with weight 𝑖
whenever 𝐹𝑖𝑎 = 𝑏.

Warning. Do not confuse the crystal map Y𝑖 with the weight lattice element 𝜖𝑖 .
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We will now check that the above graph defines an abstract crystal. (Note that we are not checking
that this crystal structure has any representation-theoretic meaning; we omit this.) Recall that we take
𝐹𝑖 to be the crystal operator corresponding to the action of 𝑓𝑛−𝑖 .

Proposition 9.4. The graph

1
1
−→ 2

2
−→ · · · 𝑛−1−−−→ 𝑛

𝑛
−→ 𝑛′

𝑛−1
−−−→ · · · 2′ 1

−→ 1′ ,

is a crystal graph, and defines a seminormal crystal of 𝔰𝔭(2𝑛) by setting 𝛽𝑖 := 𝜖𝑛+1−𝑖 − 𝜖𝑛−𝑖 for 𝑖 = 1, ..., 𝑛
and 𝛽𝑛 := 2𝜖1, and

• 𝑤 𝑖 = 𝜖𝑛+1−𝑖 , 𝑤 𝑖′ = −𝜖𝑛+1−𝑖 ,

• 𝜑𝑖 𝑗 = 𝛿𝑖 𝑗 = Y𝑖 𝑗 ′ for 𝑖 = 1, ..., 𝑛 − 1 and 𝑗 = 1, ..., 𝑛,

• 𝜑𝑖−1 𝑗 ′ = 𝛿𝑖 𝑗 = Y𝑖−1 𝑗 for 𝑖 = 2, ..., 𝑛 and 𝑗 = 1, ..., 𝑛,

• 𝜑𝑛 𝑗 = 𝛿𝑛𝑗 = Y𝑛 𝑗 ′ , 𝜑𝑛 𝑗 ′ = 0 = Y𝑛 𝑗 for 𝑗 = 1, ..., 𝑛.

Example 9.5. We record the values of 𝜑𝑖 and 𝜖𝑖 for the seminormal crystal of the natural representation
of 𝔰𝔭(4).

1 2 2′ 1′

𝜑1 1 0 1 0
𝜑2 0 1 0 0
Y1 0 1 0 1
Y2 0 0 1 0

1 2 1

Proof. Seminormality will follow from the definitions of 𝜑 and Y. We check the axioms.

(C1) For fixed 𝑖 = 1, ..., 𝑛 − 1 and 𝑗 = 1, ...., 𝑛, we check 𝜑𝑖 𝑗 = Y𝑖 𝑗 + ⟨𝛽∨𝑖 ,𝑤 𝑗 ⟩. Computing both sides
of the equation, we get 𝛿𝑖, 𝑗 on the left hand side, and 𝛿𝑖+1, 𝑗 + (𝛿𝑖, 𝑗 − 𝛿𝑖+1, 𝑗 ) on the right hand side.
A similar computation gives the result if 𝑏 = 𝑗 ′ . For 𝑖 = 𝑛, we note ⟨𝛽∨𝑛 , 𝜖 𝑗 ⟩ = 𝛿1𝑗 , which gives
the result.

(C2) For a fixed 𝑖 = 1, ..., 𝑛 − 1, we check 𝑤 (𝐸𝑖𝑏) = 𝑤 (𝑏) + 𝛽𝑖 , whenever 𝐸𝑖𝑏 ∈ 𝐵. We note that this
latter condition implies 𝑏 = 𝑖 + 1 or 𝑖′ . We compare 𝑤 𝑖 with 𝑤 𝑖 + 1 + 𝛽𝑖 . That is, 𝜖𝑛+1−𝑖 with
𝜖𝑛−𝑖 + (𝜖𝑛+1−𝑖 −𝜖𝑛−𝑖 ), which are equal. A similar computation gives the result if 𝑏 = 𝑖′ . The result
involving 𝑓𝑖 is again shown similarly. For 𝑖 = 𝑛, the desired result is just one tautological formula:
𝑤 𝑛′ = 𝑤 𝑛 + 2𝜖1.

(C3) This statement is clear.

(C4) This is true by hypothesis.

(C5) This statement is void for this particular crystal. ■

Definition-theorem 9.6. Given two crystals 𝐵1 and 𝐵2, we define the tensor product of 𝐵1 and 𝐵2
as the crystal with underlying set 𝐵1 × 𝐵2 and maps given by

• 𝑤 (𝑎 ⊗ 𝑏) = 𝑤 (𝑎) +𝑤 (𝑏),

• 𝐸𝑖 (𝑎 ⊗ 𝑏) =
{
𝐸𝑖𝑎 ⊗ 𝑏 if 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝑏),
𝑎 ⊗ 𝐸𝑖𝑏 if 𝜑𝑖 (𝑎) < Y𝑖 (𝑏),

𝐹𝑖 (𝑎 ⊗ 𝑏) =
{
𝐹𝑖𝑎 ⊗ 𝑏 if 𝜑𝑖 (𝑎) > Y𝑖 (𝑏),
𝑎 ⊗ 𝐹𝑖𝑏 if 𝜑𝑖 (𝑎) ≤ Y𝑖 (𝑏),

• Y𝑖 (𝑎 ⊗ 𝑏) = max{Y𝑖 (𝑎), Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩},
𝜑𝑖 (𝑎 ⊗ 𝑏) = max{𝜑𝑖 (𝑏), 𝜑𝑖 (𝑎) + ⟨𝛽∨𝑖 ,𝑤 (𝑏)⟩},
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for 𝑖 = 1, ..., 𝑛. (We write 𝑎 ⊗ 𝑏 for (𝑎, 𝑏), and we have 𝑎 ⊗ 0 = 0 = 0 ⊗ 𝑏.)

Proof. We check well-definedness of the definition.

(C1) We aim to show 𝜑𝑖 (𝑎 ⊗ 𝑏) = Y𝑖 (𝑎 ⊗ 𝑏) + ⟨𝛽∨𝑖 ,𝑤 (𝑎 ⊗ 𝑏)⟩. That is,

max{𝜑𝑖 (𝑏), 𝜑𝑖 (𝑎) + ⟨𝛽∨𝑖 ,𝑤 (𝑏)⟩} = max{Y𝑖 (𝑎), Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩} + ⟨𝛽∨𝑖 ,𝑤 (𝑎) +𝑤 (𝑏)⟩.

Using axiom (C1) for 𝐵1 and 𝐵2, the formula follows.

(C2) We check 𝑤 (𝐸𝑖 (𝑎 ⊗ 𝑏)) = 𝑤 (𝑎 ⊗ 𝑏) + 𝛽𝑖 ; the other formula is shown similarly. Unraveling the
definitions and using (C2) for 𝐵1, 𝐵2, the formula we seek is{

(𝑤 (𝑎) + 𝛽𝑖 ) +𝑤 (𝑏) = 𝑤 (𝑎) +𝑤 (𝑏) + 𝛽𝑖 if 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝑏),
𝑤 (𝑎) + (𝑤 (𝑏) + 𝛽𝑖 ) = 𝑤 (𝑎) +𝑤 (𝑏) + 𝛽𝑖 if 𝜑𝑖 (𝑎) < Y𝑖 (𝑏).

But this is tautological.

(C3) We check Y𝑖 (𝐸𝑖 (𝑎 ⊗ 𝑏)) = Y𝑖 (𝑎 ⊗ 𝑏) − 1; the other three formulas are shown similarly. Using (C3)
for 𝐵1, 𝐵2, we rewrite the formula we want to check as

max{Y𝑖 (𝑎) − 1, Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩} if 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝑏),

= max{Y𝑖 (𝑎), Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩} − 1

max{Y𝑖 (𝑎), Y𝑖 (𝑏) − 1 − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩} if 𝜑𝑖 (𝑎) < Y𝑖 (𝑏).

= max{Y𝑖 (𝑎), Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩} − 1

We now use (C1) for 𝐵1, 𝐵2 to note that 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝑏) if and only if Y𝑖 (𝑎) ≥ Y𝑖 (𝑏) − ⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩.
The formula is therefore clear.

(C4) Let 𝐹𝑖 (𝑎 ⊗ 𝑏) = 𝑐 ⊗ 𝑑 . We aim to check 𝐸𝑖 (𝑐 ⊗ 𝑑) = 𝑎 ⊗ 𝑏. The reciprocal is shown similarly.
We have

𝐸𝑖 (𝑐 ⊗ 𝑑) =
{
𝐸𝑖𝑐 ⊗ 𝑑 if 𝜑𝑖 (𝑐) ≥ Y𝑖 (𝑑),
𝑐 ⊗ 𝐸𝑖𝑑 if 𝜑𝑖 (𝑐) < Y𝑖 (𝑑).

We distinguish further into more cases: 𝑐 ⊗ 𝑑 is either 𝐹𝑖𝑎 ⊗ 𝑏 or 𝑎 ⊗ 𝐹𝑖𝑏. We have

𝐸𝑖 (𝑐 ⊗ 𝑑) =


𝐸𝑖𝐹𝑖𝑎 ⊗ 𝑏 if 𝜑𝑖 (𝐹𝑖𝑎) ≥ Y𝑖 (𝑏), 𝜑𝑖 (𝑎) > Y𝑖 (𝑏),
𝐸𝑖𝑎 ⊗ 𝐹𝑖𝑏 if 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝐹𝑖𝑏), 𝜑𝑖 (𝑎) ≤ Y𝑖 (𝑏),
𝐹𝑖𝑎 ⊗ 𝐸𝑖𝑏 if 𝜑𝑖 (𝐹𝑖𝑎) < Y𝑖 (𝑏), 𝜑𝑖 (𝑎) > Y𝑖 (𝑏),
𝑎 ⊗ 𝐸𝑖𝐹𝑖𝑏 if 𝜑𝑖 (𝑎) < Y𝑖 (𝐹𝑖𝑏), 𝜑𝑖 (𝑎) ≤ Y𝑖 (𝑏).

We may now use (C3) to simplify the cases. For instance, the second case becomes 𝜑𝑖 (𝑎) ≥
Y𝑖 (𝑏) + 1, 𝜑𝑖 (𝑎) ≤ Y𝑖 (𝑏), which is impossible. Similarly, the third case is impossible. But in the
first and last cases, we have 𝐸𝑖𝐹𝑖𝑎 ⊗ 𝑏 = 𝑎 ⊗ 𝑏 = 𝑎 ⊗ 𝐸𝑖𝐹𝑖𝑏 (using (C4) for 𝐵1, 𝐵2). This gives the
result.

(C5) If 𝜑𝑖 (𝑎 ⊗ 𝑏) = −∞, we deduce 𝜑𝑖 (𝑎) = 𝜑𝑖 (𝑏) = −∞, and the result now follows using (C5) for
𝐵1, 𝐵2. ■

Lemma 9.7. If 𝐵1 and 𝐵2 are seminormal crystals, then 𝐵1 ⊗ 𝐵2 is seminormal.
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Proof. Let 𝐾 be defined as max{𝑘 ≥ 0 : 𝐸𝑘𝑖 (𝑎 ⊗ 𝑏) ∈ 𝐵}. We aim to show 𝐾 = max{Y𝑖 (𝑎), Y𝑖 (𝑏) −
⟨𝛽∨𝑖 ,𝑤 (𝑎)⟩}. Using axiom (C1), we may rewrite this as

𝐾 = Y𝑖 (𝑎) +max{0, Y𝑖 (𝑏) − 𝜑𝑖 (𝑎)}.

Suppose first that 𝜑𝑖 (𝑎) ≥ Y𝑖 (𝑏). Since 𝐵1 is seminormal, 𝜑𝑖 (𝑒𝑘𝑎) = 𝜑𝑖 (𝑎) + 𝑘 ≥ Y𝑖 (𝑏) for all 𝑘 ≥ 0.
Therefore, 𝐸𝐾𝑖 (𝑎 ⊗ 𝑏) = 𝐸𝐾𝑖 (𝑎) ⊗ 𝑏 and thus 𝐾 = Y𝑖 (𝑎).

Suppose now that 𝜑𝑖 (𝑎) < Y𝑖 (𝑏). Then 𝐸𝑘𝑖 (𝑎 ⊗ 𝑏) = 𝐸𝑘−1𝑖 (𝑎 ⊗ 𝐸𝑖 (𝑏)). Since 𝐵2 is seminormal,
𝜑𝑖 (𝑎) < Y𝑖 (𝑏) +𝑘 = Y𝑖 (𝐸𝑘𝑖 (𝑏)) while 𝑘 ≤ Y𝑖 (𝑏) −𝜑𝑖 (𝑎). When applying the operator 𝐸𝑖 to 𝐸Y𝑖 (𝑏)−𝜑𝑖 (𝑎)𝑖

(𝑎 ⊗
𝑏) = 𝑎 ⊗ 𝐸Y𝑖 (𝑏)−𝜑𝑖 (𝑎)

𝑖
(𝑏), we act on the first factor by definition. This brings us back to the first situation,

which in turn gives the formula 𝐾 = Y𝑖 (𝑎) + Y𝑖 (𝑏) − 𝜑𝑖 (𝑎). ■

We are now almost ready to describe the crystal structure on Kashiwara’s tableaux. But first, we
need to introduce readings.

Definition 9.8. Given a tableau 𝑇 , the Far-Eastern reading of 𝑇 is the formal tensor of its entries,
going column by column, top to bottom, and right to left.

Example 9.9. Here is a tableau and its Far-Eastern reading.

1 2 5

3 4
↦→ 5 ⊗ 2 ⊗ 4 ⊗ 1 ⊗ 3 .

Since every irreducible representation of 𝔰𝔭(2𝑛) appears as a subrepresentation of some tensor
power of the natural representation, one can interpret weight vectors of any given representation as
some tensor of the weight vectors of the natural representation. We get the following theorem [HK02,
Thm. 8.3.3], [BS17, Thm. 6.10], [KN94, Thm. 4.4.3].

Theorem 9.10. The crystal basis for the finite dimensional irreducible representation 𝐿(_) of 𝔰𝔭(2𝑛) with
highest weight _ is canonically identified (as a set) with the set of Far-Eastern readings of Kashiwara’s
tableaux of shape _.

Proof. Since 𝐿(_) is a subrepresentation of 𝑉 ⊗𝑁 for 𝑁 = |_ |, the crystal graph of 𝐿(_) appears as a
connected component of the crystal graph of 𝑉 ⊗𝑁 [HK02, Thm. 4.2.10], which we now know how to
compute. More specifically, the crystal graph for 𝐿(_) will be the connected component generated by
its highest weight vector, which we aim to identify with the Kashiwara tableau 𝑇_ : [_] → C given by
𝑇 (𝑖, 𝑗) = 𝑖 . For instance, for _ = (3, 3, 2), 𝑛 = 3,

𝑇_ =
1 1 1

2 2 2

3 3

.

So it will suffice to show that the set of Kashiwara’s tableaux of shape _ is stable under the action of 𝐹𝑖
and 𝐸𝑖 for all 𝑖 (when the action doesn’t vanish), and that it has a unique highest weight vector 𝑇_ .

Let us show stability. Let 𝑇 be a Kashiwara tableau of shape _. Suppose 𝐹𝑖𝑇 ≠ 0, 𝑖 ≠ 𝑛. Therefore,
𝑇 and 𝐹𝑖𝑇 differ either by an entry 𝑥 = 𝑖 turned into 𝑖 + 1 , or by a entry 𝑥 = 𝑖 + 1′ turned into 𝑖′ . If
𝑖 = 𝑛, then 𝑇 and 𝐹𝑖𝑇 differ by an entry 𝑥 = 𝑛 turned into 𝑛′ .
Claim 1. The tableau 𝐹𝑖𝑇 is semistandard in the alphabet C = {1 < · · · < 𝑛 < 𝑛′ < · · · < 1′}.

Proof of claim. For the purpose of this proof, we will assume 𝑇 and 𝐹𝑖𝑇 differ either by an entry 𝑥 = 𝑖

turned into 𝑖 + 1 . The other cases are shown similarly.
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Let 𝑟 be the entry immediately to the right of 𝑥 , if it exists; let 𝑑 be the entry immediately below
𝑥 , if it exists. We introduce some notation for the entries of 𝑇 and two subreadings of the Far-Eastern
reading of 𝑇 ;

𝑎1 ⊗ · · · ⊗ 𝑎𝑘 ⊗ 𝑟 ⊗ 𝑏1 ⊗ · · · ⊗ 𝑏𝑙 ⊗ 𝑥 ⊗

𝐷︷                ︸︸                ︷
𝑑 ⊗ 𝑐1 ⊗ · · · ⊗ 𝑐𝑚︸                                           ︷︷                                           ︸

𝑅

.

Schematically, 𝑅 and 𝐷 define the following two highlighted parts of the tableau:

𝑇 =
𝑥

𝑑

𝑟
=⇒ 𝑅 =

𝑥

𝑑

𝑟
and 𝐷 =

𝑥

𝑑

𝑟
.

By hypothesis, 𝐹𝑖 takes 𝑥 = 𝑖 to 𝑖 + 1 . Therefore, 𝜑𝑖 (𝑟 ) ≤ Y𝑖 (𝑅) and 𝜑𝑖 (𝑥) > Y𝑖 (𝐷). Since 𝑥 = 𝑖 , and
therefore 𝜑𝑖 (𝑥) = 1, we deduce Y𝑖 (𝐷) = 0.

Suppose now that 𝐹𝑖𝑇 is not semistandard. Since 𝑇 is semistandard, we must have either 𝑟 = 𝑖 or
𝑑 = 𝑖 + 1 . Let us discuss these two cases separately.

• If 𝑑 = 𝑖 + 1 , then

Y𝑖 (𝐷) = Y𝑖 ( 𝑖 + 1 ⊗ 𝑐1 ⊗ · · · ⊗ 𝑐𝑚)
= max{Y𝑖 𝑖 + 1 , Y𝑖 (𝑐1 ⊗ · · · ⊗ 𝑐𝑚) − ⟨𝛽∨𝑖 ,𝑤 𝑖 + 1 ⟩}
≥ Y𝑖 (𝑐1 ⊗ · · · ⊗ 𝑐𝑚) − ⟨𝜖𝑛+1−𝑖 − 𝜖𝑛−𝑖 ,−𝜖𝑛−𝑖⟩ ≥ 1.

This is a contradiction to the statement above.

• If 𝑟 = 𝑖 , then 𝜑𝑖 (𝑟 ) = 1. We assume firstly that none of the entries 𝑏1, ..., 𝑏𝑙 are in the set
{ 𝑖 , 𝑖 + 1 , 𝑖′ , 𝑖 + 1′ }. We will discuss later why we can make such an assumption. With this, we
get Y𝑖 (𝑏 𝑗 ) = 0 = ⟨𝛽∨𝑖 ,𝑤 (𝑏 𝑗 )⟩ for all 𝑗 , which means

Y𝑖 (𝑅) = Y𝑖 (𝑏1 ⊗ · · · ⊗ 𝑏𝑙 ⊗ 𝑖 ⊗ 𝐷)
= max{Y𝑖 (𝑏1), Y𝑖 (𝑏2 ⊗ · · · ⊗ 𝑏𝑙 ⊗ 𝑖 ⊗ 𝐷) − ⟨𝛽∨𝑖 ,𝑤 (𝑏1)⟩}
= Y𝑖 (𝑏2 ⊗ · · · ⊗ 𝑏𝑙 ⊗ 𝑖 ⊗ 𝐷)
= · · · = Y𝑖 ( 𝑖 ⊗ 𝐷)
= max{Y𝑖 𝑖 , Y𝑖 (𝐷) − ⟨𝛽∨𝑖 ,𝑤 𝑖 ⟩} = max{0, 0 − 1} = 0.

This contradicts the above inequality 𝜑𝑖 (𝑟 ) ≤ Y𝑖 (𝑅).

Let us discuss why 𝑏 𝑗 ∉ { 𝑖 , 𝑖 + 1 , 𝑖′ , 𝑖 + 1′ } for all 𝑗 = 1, ..., 𝑙 . If 𝑏 𝑗 = 𝑖 for some 𝑗 , then 𝑇
would not be semistandard. If 𝑏 𝑗 = 𝑖 + 1 for some 𝑗 , we note 𝑗 must be equal to 1. But then, 𝑑
must be equal to 𝑖 + 1 too, and we get a contradiction as above. If 𝑏 𝑗 = 𝑖 + 1′ for some 𝑗 , then
we would get

Y𝑖 (𝑏 𝑗 ⊗ · · · ⊗ 𝐷) = max{Y𝑖 𝑖 + 1′ , Y𝑖 (𝑏 𝑗+1 ⊗ · · · ⊗ 𝐷) − ⟨𝛽∨𝑖 ,𝑤 𝑖 + 1′ ⟩}
= max{0, Y𝑖 (𝑏 𝑗+1 ⊗ · · · ⊗ 𝐷) − 1}.

Therefore, the value of Y𝑖 (𝑏 𝑗 ⊗ · · · ⊗ 𝐷) would still be 0 by the above computation applied to
Y𝑖 (𝑏 𝑗+1 ⊗ · · · ⊗ 𝐷). Finally, if 𝑏 𝑗 = 𝑖′ for some 𝑗 , we find the following configuration in 𝑇 :

𝑖 𝑖

𝑖 ′
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This contradicts axiom (K2) for 𝑇 . □

Claim 2. The tableau 𝐹𝑖𝑇 is admissible.

Proof of claim. We only need to check admissibility of the column in which 𝑥 lies. So we may assume
in the following that 𝑇 is a column tableau.

If 𝑖 = 𝑛 the statement is clear. So let 𝑖 ≠ 𝑛.
Assume firstly that𝑇 and 𝐹𝑖𝑇 differ by an entry 𝑥 = 𝑖 turned into 𝑖 + 1 . This preserves admissibility

in the column.
Assume now that 𝑇 and 𝐹𝑖𝑇 differ by an entry 𝑥 = 𝑖 + 1′ turned into 𝑖′ .
If there is no entry 𝑖 in the column of 𝑥 , then turning 𝑥 into 𝑖′ preserves admissibility. Assume

therefore that there is such an entry in the column, and write 𝑇 = 𝐴 ⊗ 𝑖 ⊗ 𝐵 ⊗ 𝑥 ⊗ 𝐶 , where 𝐴 =

𝑎1 ⊗ · · · ⊗ 𝑎𝑘 , 𝐵 = 𝑏1 ⊗ · · · ⊗𝑏𝑙 , and𝐶 = 𝑐1 ⊗ · · · ⊗ 𝑐𝑚 are subreadings of𝑇 . We note 𝑏 𝑗 ∉ { 𝑖 , 𝑖 + 1′ , 𝑖′ }
for any 𝑗 = 1, ..., 𝑙 , since the first two entries would contradict 𝑇 being weakly increasing, and the third
entry would contradict 𝐹𝑖𝑇 being weakly increasing. If 𝑏1 = 𝑖 + 1 , we note admissibility is preserved
when turning 𝑥 into 𝑖′ . So, we assume 𝑏 𝑗 ∉ { 𝑖 , 𝑖 + 1′ , 𝑖′ , 𝑖 + 1 }.

Since 𝑐1 is easily seen to be not be in { 𝑖 , 𝑖 + 1′ , 𝑖′ , 𝑖 + 1 }, we get Y𝑖 (𝑥 ⊗ 𝐶) = 0.
Since 𝐹𝑖 acts on 𝑥 , we must have 1 = 𝜑𝑖 𝑖 ≤ Y𝑖 (𝐵 ⊗ 𝑥 ⊗ 𝐶) and 1 = 𝜑𝑖 (𝑥) > Y𝑖 (𝐶) = 0. Finally, a

computation similar to those of the proof of the previous claim yields Y𝑖 (𝐵 ⊗ 𝑥 ⊗ 𝐶) = Y𝑖 (𝑥 ⊗ 𝐶) = 0,
giving a contradiction. □

Wewould now like to check that cosplit(𝐹𝑖𝑇 ) is semistandard. However, although more visual, such
a proof involves a big amount of case-checking. Instead, we could show that 𝐹𝑖𝑇 satisfies axiom (K2’).
This the approach taken in [HK02, BS17]. However, we have found their arguments incomplete. We
instead show (K2) as in the original paper [KN94].

By definition of the cosplit algorithm, 𝐹𝑛𝑇 being semistandard implies cosplit(𝐹𝑛𝑇 ) also being semi-
standard.
Claim 3. The tableau 𝐹𝑖𝑇 verifies (K2), for 𝑖 = 1, ..., 𝑛 − 1.

Proof of claim. Suppose 𝐹𝑖𝑇 has the following configuration, the other one can be analyzed similarly:

𝑝 → 𝑎
𝑞 → 𝑏
𝑟 → 𝑏 ′

𝑠 → 𝑎′

Then 𝑇 must have one of the following two configurations:

𝑝 → 𝑎 𝑎−1 𝑎 𝑎 𝑎
𝑞 → 𝑏 𝑏 𝑏−1 𝑏 𝑏
𝑟 → 𝑏 ′ 𝑏 ′ 𝑏 ′ 𝑏+1′ 𝑏 ′

𝑠 → 𝑎′ 𝑎′ 𝑎′ 𝑎′ 𝑎+1′

If 𝑖 < 𝑏, then the configuration of 𝐹𝑖𝑇 verifies (K2) from the analogous property of 𝑇 . Assume 𝑖 ≥ 𝑏.
We will treat all cases simultaneously except for the second one, which is slightly more delicate. We
therefore assume we don’t have the second configuration, for now.

Without loss of generality, 𝑇 has two columns. Let us now restrict our attention to the entries of 𝑇
that in rows 𝑝, 𝑝+1, ..., 𝑠−1, 𝑠 . This gives us a new tableau 𝑃 in the alphabet {𝑎 < · · · < 𝑛 < 𝑛′ < · · · < 𝑎′}.

We know 𝑇 is admissible, which means each column has a higher concentration of high numbers
than low numbers. In equations, if the length of the column is 𝑁 , then for each pair of entries 𝑥 at row
𝑘 and 𝑥 ′ at row 𝑙 , we get 𝑁 − (𝑙 − 𝑘) < 𝑛 − 𝑥 . The property of admissibility is inherited by 𝑃 .
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By a previous claim, the columns of 𝐹𝑖𝑃 must also be admissible. In equations, for each pair of en-
tries 𝑏 at row𝑞 and 𝑏′ at row 𝑟 , we get (𝑠−𝑝)−(𝑟−𝑞) < 𝑏−𝑎, which is exactly what wewanted to show.

If𝑇 were to have the second configuration above, we proceed similarly, but changing the definition
of 𝑃 . Since 𝐹𝑖 = 𝐹𝑏 affects the first column of𝑇 and not the second one, we deduce that there is an entry
𝑎 − 1′ in the second column of 𝑇 , which lies in row 𝑠 + 1.

𝑝 → 𝑎−1
𝑞 → 𝑏
𝑟 → 𝑏 ′

𝑠 → 𝑎′

𝑠+1→ 𝑎−1′

Our tableau 𝑃 will be defined by rows 𝑝, 𝑝 + 1, ..., 𝑠, 𝑠 + 1. The same analysis as before gives the desired
inequality. □

This concludes the first part of the proof. It remains to show that the crystal has a unique highest
weight vector and that it is 𝑇_ . (Note that 𝐸𝑖𝑇_ = 0 for all 𝑖 and therefore it is a highest weight vector.)

Assume there is a different highest weight vector 𝑇 . Let 𝑘 be the biggest integer such that 𝑇 and 𝑇_
agree on the first 𝑘 rows. (We therefore assume 𝑘 ≠ 𝑙 (_).) Let 𝑥 be the rightmost entry in row 𝑘 + 1 of
𝑇 . Necessarily, 𝑥 ≠ 𝑘+1 . We may introduce some notation for the entries of 𝑇 ;

𝑎1 ⊗ · · · ⊗ 𝑎𝑘︸          ︷︷          ︸
𝐴

⊗𝑥 ⊗ 𝑏1 ⊗ · · · ⊗ 𝑏𝑙︸         ︷︷         ︸
𝐵

⊗ 𝑐1 ⊗ · · · ⊗ 𝑐𝑚︸          ︷︷          ︸
𝐶

,

where 𝐵 is the rest of the column in which 𝑥 lies. Schematically, we are breaking up the tableau in the
following parts:

𝑇 = 𝑥

𝐴

𝐵

𝐶 .

In particular, note that 𝐴 is a tableau in which each entry in row 𝑗 is 𝑗 , for 𝑗 = 1, ..., 𝑘 . Consequently,
𝐸𝑖 (𝐴) = 0 for all 𝑖 = 1, ..., 𝑛. We may also compute 𝜑𝑖 (𝐴) = 0 for all 𝑖 ≥ 𝑘 + 1.

Fix 𝑖 ≥ 𝑘 + 1. We have 𝐸𝑖 (𝐴 ⊗ 𝑥 ⊗ 𝐵 ⊗𝐶) = 0, which combined with the tensor product formula for
𝐸𝑖 and the above implies 𝐸𝑖 (𝐴 ⊗ 𝑥) = 0. Thus 𝐸𝑖 (𝑥) = 0. This means 𝑥 ∉ { 𝑖 + 1 , 𝑖′ }. Since this is true
for 𝑖 = 𝑘 + 1, ..., 𝑛, we conclude 𝑥 is either 𝑖 for 𝑖 < 𝑘 (which is not possible, since 𝑇 is semistandard),
or 𝑖′ for 𝑖 ≤ 𝑘 . But if 𝑥 = 𝑖′ with 𝑖 ≤ 𝑘 , then 𝐸𝑖 (𝐴 ⊗ 𝑥) ≠ 0. In any case, we reach a contradiction.

Therefore, 𝑇_ is the only highest weight vector, finishing the proof. ■

This concludes the description of the crystal structure of Kashiwara’s tableaux. However, the ques-
tion still remains to describe the crystal structure on King’s tableaux. For each 𝑖 = 1, ..., 𝑛, we have a
diagram

King’s
tableaux

Kashiwara’s
tableaux

King’s
tableaux

Kashiwara’s
tableaux

𝐹𝑖

which we desire to make into a commutative square. Note that, since the bijection between the two
classes of tableaux is weight-inverting (and shape-preserving), these missing maps will realize an S𝑛



CHAPTER 9. A CRYSTAL STRUCTURE ON TYPE C TABLEAUX 58

action of the set of King’s tableaux of a fixed shape. For the purpose of understanding the missing
maps, our code (see Appendices B and D) applies crystal operators on King’s tableaux by taking the
composite of the three other maps.

Note 9.11. Crystal bases are implemented in SageMath [Sage] as Kashiwara’s tableaux. However, two
aspects of the implementation differ from what it is usually written in a textbook. Firstly, the tableaux
are read by the inverse Far-Eastern reading. Secondly, the product rule for crystals is altered with respect
to the classical rule. The rule implemented for the tensor 𝑎 ⊗ 𝑏 turns out to be describing the product
rule for 𝑏 ⊗ 𝑎 instead. Consequently, both changes “cancel out”, resulting in their tableaux being exactly
Kashiwara’s tableaux.



Chapter 10

The Lie theoretic and combinatorial
definitions coincide

Our goal in this Chapter is to give a proof of the following statement.

Theorem 10.1. Let 𝑛 ≥ 1. Let _ be a partition, 𝑙 (_) ≤ 𝑛. Then, the character of the irreducible representa-
tion 𝐿(_) of 𝔰𝔭(2𝑛) of highest weight _ agrees with the generating function of King’s symplectic tableaux
of shape _ on 𝑛 letters; that is,

𝜒
𝔰𝔭(2𝑛)
_

(𝑥1, ..., 𝑥𝑛) = 𝑠𝑝_ (𝑥1, ..., 𝑥𝑛).

Note that we already know

𝑠𝑝_ (𝑥1, ..., 𝑥𝑛)
6.12
= 𝐷_ (𝑥1, ..., 𝑥𝑛, 𝑥−11 , ..., 𝑥−1𝑛 )

7.1
= 𝜒

𝔰𝔭(2𝑛)
_

(𝑥1, ..., 𝑥𝑛).

We present now, nevertheless, a distinct proof, relying on the theory of quantum groups and crystal
bases, which we quickly sketch here. We refer to [HK02] for a proper treatment of the subject.

As we said in Chapter 9, given a semisimple Lie algebra 𝔤 and a representation𝑉 of 𝔤, we would like
to find a basis of 𝑉 such that (1) each basis element is a weight vector, (2) the actions of the different
𝑒𝑖 permute the basis elements (or act by 0), and (3) the action of 𝑓𝑖 is inverse to that of 𝑒𝑖 in the basis.
However, we don’t know if such a basis exists or how to construct it. In the following, we sketch how
to construct a set that, although not a basis of 𝑉 , has properties analogous to (1), (2), and (3).

We know a 𝔤-representation is just a 𝑈 (𝔤)-module, where 𝑈 (𝔤) denotes the universal enveloping
algebra of 𝔤. One can consider deformations of 𝑈 (𝔤), by which we mean be Hopf algebras 𝑈𝑞 (𝔤) de-
pending on a parameter 𝑞 ∈ C−{0}. We do this in such a way that𝑈1 (𝔤) recovers our original universal
enveloping algebra.

Furthermore, it is possible to require the dimension of weight spaces to be invariant under the
deformation. That is, if one has a 𝑈𝑞 (𝔤)-module 𝑉 𝑞 with a weight space decomposition 𝑉 𝑞 =

⊕
_𝑉

𝑞

_
,

then we can require dim𝑉
𝑞

_
to be independent of 𝑞.

This allows us to write ch𝑉 1 =
∑
_ dim𝑉 1

_
𝑥_ =

∑
_ dim𝑉

𝑞

_
𝑥_ = ch𝑉 𝑞 for any 𝑈𝑞 (𝔤)-module 𝑉 𝑞 ,

for any 𝑞 ∈ C − {0}.
Taking a limit1 𝑞 → 0, we find a basis of the 𝑈𝑞 (𝔤)-module with properties (1), (2), and (3) (were 𝑒𝑖

and 𝑓𝑖 are exchanged by suitable operators in the limit). This is what we call a crystal basis of 𝑉 𝑞 . In
particular, a crystal basis is a seminormal abstract crystal in the sense of Definition 9.3, where

1We refer to [HK02] for the precise definition of a limit in this context.
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• Δ = {𝛽1, ..., 𝛽𝑛} is the a of simple roots of 𝔤,

• 𝑤 is the limit of the weight function of𝑈𝑞 (𝔤) (which does not depend on 𝑞), and

• the set of crystal operators {𝐸𝑖 }1≤𝑖≤𝑛 and {𝐹𝑖 }1≤𝑖≤𝑛 have actions analogous to those of the sets
of elements {𝑒𝑖 }1≤𝑖≤𝑛 and {𝑓𝑖 }1≤𝑖≤𝑛 of 𝔤, for each 𝑖 .

Given these properties, if 𝐵 is a crystal basis of 𝐿(_)𝑞 , then we can write

ch𝐿(_) =
∑̀︁
∈𝔥∗

dim𝐿(_)` 𝑥` =
∑︁
𝑏∈𝐵

𝑥𝑤 (𝑏) .

We now attempt to compute the monomial weight of a crystal basis element.

Type A

Recall Theorem 9.1, which canonically identified a crystal basis of a representation 𝐿(_) of 𝔰𝔩(𝑛) with
the set SSYT𝑛 (_).

We will also use the following results, which we present without proof. Note that, in the literature,
distinct reformulations of these statements are found, due to differences in the conventions of Chapter
2.

Proposition 10.2. The crystal graph of the natural representation 𝑉 of 𝔰𝔩(𝑛) is

𝑛
𝑛−1
−−−→ · · · 2−→ 2

1
−→ 1 ,

where 𝐹𝑖 and 𝐸𝑖 are given by 𝑓𝑖 and 𝑒𝑖 , and where𝑤 𝑗 = 𝛼 𝑗 . ■

Lemma 10.3. Let _ be a partition, 𝑙 (_) ≤ 𝑛 − 1. Let 𝐿(_) be the irreducible representation of 𝔰𝔩(𝑛) of
highest weight _. The unique highest weight vector of 𝐿(_) is identified, via Theorem 9.1, with the tableau
𝑇_ : [_] → [𝑛] given by 𝑇 (𝑖, 𝑗) = 𝑛 + 1 − 𝑖 . ■

Let ` (𝑇 ) ∈ ∑𝑛−1
𝑖=1 Z𝜖𝑖 denote the weight of a tableau𝑇 in the Lie theoretic sense. That is, the element

of the weight lattice such that 𝑥𝑇 = 𝑥` (𝑇 ) .
We note that 𝑇_ is of weight _1𝜖𝑛−1 + _2𝜖𝑛−2 + · · · + _𝑛𝜖1. That is, ` (𝑇_) = _, using the bijection of

Theorem 2.12.
Then, we note that, for any 𝑖 ∈ [𝑛] and any tableau 𝑇 ∈ SSYT𝑛 (_) such that 𝐹𝑖𝑇 ≠ 0, we have

that 𝑇 and 𝐹𝑖𝑇 differ by an entry 𝑖 + 1 turned into 𝑖 . Therefore, 𝑥𝐹𝑖𝑇 = 𝑥−1𝑖+1𝑥𝑖 · 𝑥𝑇 . On the other
hand, 𝐹𝑖 ∈ 𝔰𝔩(𝑛) takes a `-weight vector to a (` − 𝛼𝑖 )-weight vector, with 𝛼𝑖 = 𝜖𝑖+1 − 𝜖𝑖 . That is,
` (𝐹𝑖𝑇 ) = 𝐹𝑖 .` (𝑇 ) = ` (𝑇 ) − 𝛼𝑖 .

We have shown the following lemma.

Lemma 10.4. Let _ be a partition, 𝑙 (_) ≤ 𝑛 − 1. Let 𝐿(_) be the irreducible representation of 𝔰𝔩(𝑛) of
highest weight _. Let 𝐵 be a crystal basis of 𝐿(_). A crystal basis element 𝑏 ∈ 𝐵 identified with the tableau
𝑇 via Theorem 9.1 has weight𝑤 (𝑏) = ` (𝑇 ). ■

Altogether, we can show the desired theorem.

Theorem 10.5. Let 𝑛 ≥ 1, let _ be a partition. Then, the character of the irreducible representation of
𝔰𝔩(𝑛) indexed by _ agrees with the generating function of semistandard Young tableaux of shape _ on 𝑛
letters; that is,

𝜒
𝔰𝔩 (𝑛)
_
(𝑥1, ..., 𝑥𝑛) = 𝑠_ (𝑥1, ..., 𝑥𝑛).

Proof. Let 𝐵 be a crystal basis of 𝐿(_). We have

ch𝐿(_) =
∑︁
𝑏∈𝐵

𝑥𝑤 (𝑏) =
∑︁

𝑇 ∈SSYT𝑛 (_)
𝑥` (𝑇 ) =

∑︁
𝑇 ∈SSYT𝑛 (_)

𝑥𝑇 = 𝑠_ . ■
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Type C

Similar to the type A case, we use Proposition 9.4 and Theorem 9.10, which allow us to identify the basis
of the natural representation and any given irreducible representation of 𝔰𝔭(2𝑛) with a crystal basis,
respectively. We also use the fact that the tableau𝑇_ (𝑖, 𝑗) = 𝑖 is identified with the highest weight vector
of 𝐿(_), for any fixed _. We showed this in the proof of Theorem 9.10.

We know that 𝑇_ is of weight 𝑥_11 · · · 𝑥
_𝑛
𝑛 . That is, ` (𝑇_) = _1𝜖1 + · · · + _𝑛𝜖𝑛 . According to Theorem

2.18, this doesn’t correspond to the partition _, but to its reverse (_𝑛, ..., _1), which we denote by rev(_).
On the other hand, following Proposition 9.4, this tableau is identified with a crystal basis element of
weight _.

Lemma 10.6. Let _ be a partition, 𝑙 (_) ≤ 𝑛. Let 𝐿(_) be the irreducible representation of 𝔰𝔭(2𝑛) of highest
weight _. Let 𝐵 be a crystal basis of 𝐿(_). A crystal basis element 𝑏 ∈ 𝐵 identified with the tableau 𝑇 via
Theorem 9.10 has weight𝑤 (𝑏) = rev(` (𝑇 )).

Proof. We proceed by induction. For the highest weight element 𝑏 ∈ 𝐵, we have shown it above.
Assume that for a given 𝑏 ∈ 𝐵 and a given 𝑖 ∈ [𝑛] we have 𝐸𝑖𝑇 ≠ 0 and𝑤 (𝐸𝑖𝑏) = −` (𝐸𝑖𝑇 ). If 𝑖 = 𝑛,

then 𝐸𝑖𝑇 differs from 𝐹𝑖𝐸𝑖𝑇 = 𝑇 in a single entry 𝑛 turned into 𝑛′ . Then, ` (𝑇 ) = ` (𝐸𝑛𝑇 ) −𝜖𝑛 + (−𝜖𝑛) =
` (𝐸𝑛𝑇 ) −2𝜖𝑛 . On the other hand,𝑤 (𝑏) = 𝑤 (𝐹𝑛𝐸𝑛𝑏) = 𝑤 (𝐸𝑛𝑏) −𝛽𝑛 = rev(` (𝐸𝑛𝑇 )) −2𝜖1 = rev(` (𝐸𝑛𝑇 ) −
2𝜖𝑛). Thus,𝑤 (𝑏) = rev(` (𝑇 )).

If 𝑖 ≠ 0, then 𝑇 differs from 𝐸𝑖𝑇 on an entry 𝑖 into 𝑖 + 1 , or an entry 𝑖 + 1′ turned into 𝑖′ . In
either case, we get ` (𝑇 ) = ` (𝐸𝑖𝑇 ) − 𝜖𝑖 + 𝜖𝑖+1 = ` (𝐸𝑖𝑇 ) + 𝛼𝑖 . On the other hand, 𝑤 (𝑏) = 𝑤 (𝐹𝑖𝐸𝑖𝑏) =
𝑤 (𝐸𝑖𝑏) − 𝛽𝑖 = rev(` (𝐸𝑖𝑇 ) + 𝛼𝑖 ), as desired. ■

We can now proof the main theorem of this Chapter.

Proof of Thm. 10.1. Let 𝐵 be a crystal basis of 𝐿(_). We have

ch𝐿(_) =
∑︁
𝑏∈𝐵

𝑥𝑤 (𝑏) =
∑︁

𝑇 Kashiwara
tab. of shape _
on 𝑛 letters

𝑥rev(` (𝑇 )) .

Since Sheat’s bijection gives a weight-inverting bijection from the set of De Concini’s tableaux and the
set of King’s tableaux (of fixed shape and number of letters), and the bijection from De Concini’s and
Kashiwara’s tableaux is weight reversing, we get

ch𝐿(_) =
∑︁

𝑇 ∈KSpT𝑛 (_)
𝑥𝑇 = 𝑠𝑝_ (𝑥1, ..., 𝑥𝑛). ■



Appendices

62



Appendix A

Type C Bender–Knuth involutions

To complete the proof of Proposition 5.9, we need to verify that the proposed map 𝐵𝐾C
2 is an involution.

We recall that 𝐵𝐾C
2 is defined on a Gelfand–Tsetlin pattern with 6 rows as the following composite:

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5,
𝐵𝐾A

4

(2′ 3)
𝐵𝐾A

3

(2 2′)
𝐵𝐾A

5

(3 3′)
𝐵𝐾A

4

(2′ 3)
rect. (A.1)

where the first four maps are type A Bender–Knuth involutions. The 𝑗th type A Bender–Knuth involu-
tion, we recall, acts on every entry of the 𝑗th row of a Gelfand–Tsetlin pattern 𝑥 , taking

𝑥𝑖, 𝑗 to min{𝑥𝑖, 𝑗+1, 𝑥𝑖−1, 𝑗−1} +max{𝑥𝑖+1, 𝑗+1, 𝑥𝑖, 𝑗−1} − 𝑥𝑖, 𝑗 .

The rectification map acts on 𝑥35, 𝑥24, 𝑥23 and 𝑥34 by subtracting 𝑥34.
Let 𝑇0 = (𝑎 (6) , ..., 𝑎 (1) ). We introduce the following notation for the entries of the intermediate

patterns in the composite:

𝑎16 𝑎26 𝑎36 0 0 0
𝑎15 𝑎25 𝑎35 0 0
𝑎14 𝑎24 0 0
𝑎13 𝑎23 0
𝑎12 0
𝑎11

(2′ 3)
↦−−−−→

𝑎16 𝑎26 𝑎36 0 0 0
𝑎15 𝑎25 𝑎35 0 0
𝑏14 𝑏24 𝑏34 0
𝑎13 𝑎23 0
𝑎12 0
𝑎11

(2 2′)
↦−−−−→

𝑎16 𝑎26 𝑎36 0 0 0
𝑎15 𝑎25 𝑎35 0 0
𝑏14 𝑏24 𝑏34 0
𝑐13 𝑐23 0
𝑎12 0
𝑎11

(3 3′)
↦−−−−→

𝑎16 𝑎26 𝑎36 0 0 0
𝑑15 𝑑25 𝑑35 0 0
𝑏14 𝑏24 𝑏34 0
𝑐13 𝑐23 0
𝑎12 0
𝑎11

(3 2′)
↦−−−−→

𝑎16 𝑎26 𝑎36 0 0 0
𝑑15 𝑑25 𝑑35 0 0
𝑒14 𝑒24 𝑒34 0
𝑐13 𝑐23 0
𝑎12 0
𝑎11

rect.↦−−−→

𝑎16 𝑎26 𝑎36 0 0 0
𝑑15 𝑑25 𝑓35 0 0
𝑒14 𝑓24 0 0
𝑐13 𝑓23 0
𝑎12 0
𝑎11
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So, for instance, 𝑏16 = 𝑎16 and therefore it is omitted, 𝑏34 is defined to be min{𝑎35, 𝑎23}, and 𝑓35 is
defined to be 𝑑35 − 𝑒34. We also let e.g. 𝑇5 be ((𝑎16, ..., 0), (𝑑15, ..., 0), ..., (𝑎11)). If instead, 𝑇0 is changed
for e.g. (𝐴 (6) , ..., 𝐴 (1) ), then 𝐵16, 𝐵26, ..., 𝐹11 are defined the obvious way. We may rewrite Equation (A.1)
as

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 .
𝐵𝐾A

4

(2′ 3)
𝐵𝐾A

3

(2 2′)
𝐵𝐾A

5

(3 3′)
𝐵𝐾A

4

(2′ 3)
rect.

To show that 𝐵𝐾C
2 is an involution, we will compare, step by step, the entries produced by two

different composites:

Ψ :𝑎
(2′ 3)
↦−−−−→𝑏

(2 2′)
↦−−−−→𝑐

(3 3′)
↦−−−−→𝑑

(2′ 3)
↦−−−−→𝑒 =: 𝐴

(2′ 3)
↦−−−−→ 𝐵

(2 2′)
↦−−−−→ 𝐶

(3 3′)
↦−−−−→ 𝐷

(2′ 3)
↦−−−−→ 𝐸 = 𝑎,

(𝐵𝐾C
2 )2 :𝑎

(2′ 3)
↦−−−−→𝑏

(2 2′)
↦−−−−→𝑐

(3 3′)
↦−−−−→𝑑

(2′ 3)
↦−−−−→𝑒

rect.↦−−−→𝐴′
(2′ 3)
↦−−−−→𝐵′

(2 2′)
↦−−−−→𝐶 ′

(3 3′)
↦−−−−→𝐷 ′

(2′ 3)
↦−−−−→𝐸 ′

rect.↦−−−→𝐹 ′.

The second composite is created by ignoring the rectification maps from the first composite. We know
Ψ is the identity, since Bender–Knuth involutions are involutions, and the Bender–Knuth involutions
corresponding to (2 2′) and (3 3′) commute.

The first four maps of both composites are identical. The fifth pattern in each composite was rela-
beled to 𝐴, resp. 𝐴′, according to the above convention. In the following, we will express the entries of
𝐴′, 𝐵′, ..., 𝐹 ′ in terms of the entries of 𝐴, 𝐵, ..., 𝐸.

Let us start by comparing 𝐴 and 𝐴′. We have 𝐴′
𝑗𝑘

= 𝐴 𝑗𝑘 for all 𝑗, 𝑘 except for

𝐴′35 = 𝐴35 − 𝑒34, 𝐴′24 = 𝐴24 − 𝑒34, 𝐴′23 = 𝐴23 − 𝑒34, and 𝐴′34 = 𝐴34 − 𝑒34 = 0.

We may now turn to 𝐵 and 𝐵′, in which we thus find

𝐵′14 = 𝐵14, 𝐵′24 = 𝐵24, and 𝐵′34 = 𝐵34.

Indeed, we have

𝐵′24 = min{𝐴′25, 𝐴′13} +max{𝐴′35, 𝐴′23} −𝐴′24
= min{𝐴25, 𝐴13} +max{𝐴35 − 𝑒34, 𝐴23 − 𝑒34} − (𝐴24 − 𝑒34) = 𝐵24

and

𝐵′34 = min{𝐴35 − 𝑒34, 𝐴23 − 𝑒34}
= min{𝐴35, 𝐴23} − 𝑒34
= min{𝐴35, 𝐴23} −𝐴34 = 𝐵34

In the next step, when comparing 𝐶 and 𝐶 ′, we therefore note

𝐶 ′13 = 𝐶13, and 𝐶 ′23 = 𝐶23 + 𝑒34.

Similarly, in 𝐷 , 𝐷 ′,
𝐷 ′15 = 𝐷15, 𝐷 ′25 = 𝐷25, and 𝐷 ′35 = 𝐷35 + 𝑒34.

Finally, comparing 𝐸 and 𝐸 ′ gives

𝐸 ′14 = 𝐸14, 𝐸 ′24 = 𝐸24 + 𝑒34, and 𝐸 ′34 = 𝐸34 + 𝑒34 = 𝑎34 + 𝑒34 = 𝑒34.

And now, subtracting 𝑒34 from 𝐸 ′34, 𝐸 ′24, 𝐷 ′35 and 𝐶 ′23 recovers the pattern 𝐸. This shows 𝐹 ′ = 𝐸 = 𝑎, as
desired.
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NoteA.2. Just for illustrative purposes, we give explicitly give the patterns𝐴′, 𝐵′, ..., 𝐹 ′ in terms of𝐴, 𝐵, ...,𝐶
according to the computations above. To save space, we denote 𝑥 − 𝑒34 by 𝑥− and 𝑥 + 𝑒34 by 𝑥+.

𝐴′ =

𝐴16 𝐴26 𝐴36 0 0 0
𝐴15 𝐴25 𝐴−35 0 0
𝐴14 𝐴−24 𝐴−34 0
𝐴13 𝐴−23 0
𝐴12 0
𝐴11

(2′ 3)
↦−−−−−→ 𝐵′ =

𝐵16 𝐵26 𝐵36 0 0 0
𝐵15 𝐵25 𝐵−35 0 0
𝐵14 𝐵24 𝐵34 0
𝐵13 𝐵−23 0
𝐵12 0
𝐵11

(2 2′)
↦−−−−−→ 𝐶 ′ =

𝐶16 𝐶26 𝐶36 0 0 0
𝐶15 𝐶25 𝐶−35 0 0
𝐶14 𝐶24 𝐶34 0
𝐶13 𝐶+23 0
𝐶12 0
𝐶11

(3 3′)
↦−−−−−→ 𝐷 ′ =

𝐷16 𝐷26 𝐷36 0 0 0
𝐷15 𝐷25 𝐷+35 0 0
𝐷14 𝐷24 𝐷34 0
𝐷13 𝐷+23 0
𝐷12 0
𝐷11

(3 2′)
↦−−−−−→ 𝐸 ′ =

𝐸16 𝐸26 𝐸36 0 0 0
𝐸15 𝐸25 𝐸+35 0 0
𝐸14 𝐸+24 𝐸+34 0
𝐸13 𝐸+23 0
𝐸12 0
𝐸11

rect.↦−−−→ 𝐹 ′ =

𝐸16 𝐸26 𝐸36 0 0 0
𝐸15 𝐸25 𝐸35 0 0
𝐸14 𝐸24 𝐸34 0
𝐸13 𝐸23 0
𝐸12 0
𝐸11



Appendix B

Crystal reflections and
Bender–Knuth

The following diagram of symplectic tableaux,

King’s tableaux
in the alphabet A

Kashiwara’s tableaux
on the alphabet C

King’s tableaux
on the alphabet A

Kashiwara’s tableaux
in the alphabet C

Bender–Knuth 𝐵𝐾C
𝑖

crystal reflection 𝑠𝑖

does not commute, even for row or column tableaux. (The horizontal maps are the composites defined
in Chapter 8.)

For instance, consider the action of 𝐵𝐾C
2 on the following King tableau 𝑇 .

𝑇 =

2

2′

4

4′

(2′ 3)
↦−−−−→

2

3

4

4′

(2 2′)
↦−−−−→

2′

3

4

4′

(3 3′)
↦−−−−→

2′

3′

4

4′

(2′ 3)
↦−−−−→

3

3′

4

4′

rectification↦−−−−−−−−→
3

3′

4

4′

= 𝐵𝐾C
2 (𝑇 ).

The corresponding Kashiwara tableaux are obtained, morally, by pushing each instance of 1′, 2′, 3′ and
4′ down. In this case,

𝑇 =

2

2′

4

4′

↦→
2

4

4′

2′

, and 𝐵𝐾C
2 (𝑇 ) =

3

3′

4

4′

↦→
3

4

4′

3′

.

One may check that each of these two tableaux is fixed by 𝑠2.
As announced, the diagram also doesn’t commute for row tableaux. For instance, we have

1 1′ 1 1′

2 2′ 2 2′

𝐵𝐾C
1

but again, both Kashiwara’s tableaux are fixed by 𝑠1.
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Appendix C

Axioms for De Concini’s and
Kashiwara’s tableaux

It is our goal in this Appendix to present proofs for the equivalence statements in Chapter 8.

We recall here our main definitions. ADe Concini (symplectic) tableau is a semistandard tableau
𝑇 in the alphabet B = {𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛} such that each column of𝑇 is admissible,
and such that the split version of 𝑇 is semistandard.

A Kashiwara (symplectic) tableau is a semistandard tableau 𝑇 in the alphabet C = {1 < · · · <
𝑛 < 𝑛′ < · · · < 1′} such that

(K1) if 𝑎 and 𝑎′ appear in the same column, say 𝑇 (𝑟, 𝑐) = 𝑎, 𝑇 (𝑠, 𝑐) = 𝑎′, then (𝑠 − 𝑟 ) + 𝑎 is strictly
greater than the length of column 𝑇 (−, 𝑐), and

(K2) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎 𝑎
𝑞 → 𝑏 𝑏
𝑟 → 𝑏 ′ 𝑏 ′

𝑠 → 𝑎′ 𝑎′

(by which we mean that e.g. the first 𝑎 entry in the first column is at row number 𝑝 , etc.), then
(𝑞 − 𝑝) + (𝑠 − 𝑟 ) < (𝑏 − 𝑎). Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 and 𝑎 ≤ 𝑏.

The first equivalence statement we presented is the following.

Lemma C.1. Let 𝑇 be a tableau in the alphabet C satisfying (K1). Then, 𝑇 satisfies (K2) if and only if it
satisfies (K2’);

(K2’) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎 𝑎
𝑞 → 𝑏 𝑏
𝑟 → 𝑐 ′ 𝑐 ′

𝑠 → 𝑑 ′ 𝑑 ′

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < max{𝑏, 𝑐} −min{𝑎, 𝑑}. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 , 𝑎 ≤ 𝑏, and 𝑐 ≤ 𝑑 .

Proof. The conditions of (K2) are particular cases of those of (K2’), so we only need to show one impli-
cation.
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Assume that 𝑇 verifies (K2). Let 𝑇 have the first configuration of (K2’) for some 𝑎, 𝑏, 𝑐, 𝑑 . If 𝑇 were
to have the second configuration, a similar proof would follow.

𝑝 → 𝑎
𝑞 → 𝑏
𝑟 → 𝑐 ′

𝑠 → 𝑑 ′

Let 𝛼 be the smallest number greater than max{𝑎, 𝑑} such that 𝛼 appears in the first column and 𝛼′

in the second column. If such a number doesn’t exist, then the entries between rows 𝑝 and 𝑞 of the
first column, together with the entries between rows 𝑟 and 𝑠 of the second column, are all distinct. In
formulas, there are (𝑝 −𝑞) + (𝑠 −𝑟 ) entries, all lying in [min{𝑏, 𝑐},max{𝑏, 𝑐}), giving the desired output.
Assume therefore we have the following:

𝑝 → 𝑎
𝜋 → 𝛼
𝑞 → 𝑏
𝑟 → 𝑐 ′

𝜎 → 𝛼 ′

𝑠 → 𝑑 ′

Note that, by construction, the set of entries between 𝑎 and 𝛼 is disjoint to the set of entries between
𝛼′ and 𝑑′ . This gives

(𝜋 − 𝑝) + (𝜎 − 𝑠) ≤ 𝛼 −min{𝑎, 𝑑}. (C.2)

Let 𝛽 be the greatest number smaller than min{𝑏, 𝑐} such that 𝛽 and 𝛽′ appear in the second
column, with 𝛼 ≤ 𝛽 . If such a number doesn’t exist, then the set of entries between rows 𝜋 and 𝑞 in
the second column is disjoint to the set of entries between rows 𝑟 and 𝜎 . This gives (𝑞 − 𝜋) + (𝜎 − 𝑟 ) ≤
max{𝑏, 𝑐} − 𝛼 , which together with the above equation give the desired output, once again. Assume
therefore we have:

𝑝 → 𝑎
𝜋 → 𝛼
b → 𝛽
𝑞 → 𝑏
𝑟 → 𝑐 ′

𝜌 → 𝛽 ′

𝜎 → 𝛼 ′

𝑠 → 𝑑 ′

Note that, by construction, the set of entries between 𝛽 and 𝑏 is disjoint with the set of entries between
𝑐′ and 𝛽′ . This gives

(𝑞 − b) + (𝜌 − 𝑟 ) ≤ max{𝑏, 𝑐} − 𝛽. (C.3)

Applying (K2) to entries 𝛼 and 𝛽 , we get

(b − 𝜋) + (𝜎 − 𝜌) < 𝛽 − 𝛼. (C.4)

Summing up Equations (C.2), (C.3), and (C.4), we get the desired formula. ■

Inspired by this and by the bijection between the two sets of tableaux, we now give two novel
characterizations of De Concini tableaux.

Proposition C.5. Let 𝑇 be a tableau in the alphabet B such that each column is admissible. Then, 𝑇 is a
De Concini tableau if and only if it satisfies (DC’);



APPENDIX C. AXIOMS FOR DE CONCINI’S AND KASHIWARA’S TABLEAUX 69

(DC’) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎′ 𝑎′

𝑞 → 𝑏 ′ 𝑏 ′
𝑟 → 𝑐 𝑐
𝑠 → 𝑑 𝑑

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < max{𝑎, 𝑑} −min{𝑏, 𝑐}. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 , 𝑎 ≤ 𝑏, and 𝑐 ≤ 𝑑 .

Proof. We show that 𝑇 verifies (DC’) if and only if split(𝑇 ) is semistandard. The proof is similar to the
second part of Theorem C.8.

If split(𝑇 ) is semistandard, and 𝑇 has the first configuration of axiom (DC’), then split(𝑇 ) has the
following configuration:

𝑝 → 𝑎′ ∗
𝑞 → 𝑏 ′ ∗
𝑟 → ∗ 𝑐
𝑠 → ∗ 𝑑

In the second column, between rows 𝑝 and 𝑞, we find 𝑞 − 𝑝 + 1 numbers in [𝑏, 𝑎]. Between rows 𝑟
and 𝑠 , we find 𝑠 − 𝑟 − 1 numbers in (𝑐, 𝑑). In total, there are (𝑞 − 𝑝) + (𝑠 − 𝑟 ) numbers in the interval
[min{𝑏, 𝑐},max{𝑎, 𝑑}]. Note that if both bounds are obtained, then at least one of 𝑐 and 𝑑 is not being
counted by (𝑞 − 𝑝) + (𝑠 − 𝑟 ). So (DC’) holds.

If 𝑇 has the second configuration, a similar argument gives the result.

Suppose𝑇 verifies (DC’) but split(𝑇 ) is not semistandard; more precisely, assume it has the following
configuration for some primed entries 𝑥 ′ , 𝑦′ , and 𝑏′ , with 𝑦 ≥ 𝑏 and 𝑥 < 𝑏:

𝑦 ′ 𝑥 ′ 𝑏 ′ ∗

(If there was an analogous configuration with all non-primed entries, a similar proof follows.)
Let [𝐾 + 1, 𝐿] be the interval corresponding to the block in which 𝑦′ and 𝑥 ′ lie; let 𝑎 and 𝑑 be the

greatest numbers less than 𝐾 such that 𝑎′ appears in column 1 and 𝑑 in column 2; let 𝑐 be the smallest
number greater than 𝑥 such that 𝑐 appears in column 2.

𝑝 → 𝑎′

𝑞 → 𝑏 ′
𝑟 → 𝑐
𝑠 → 𝑑

split↦−−−→

𝑎′

𝑦 ′ 𝑥 ′ 𝑏 ′ ∗

𝑐

𝑑

𝐾 ′

𝐾

𝑥

Figure C.6: On the left, a configuration of tableau𝑇 . On the right, the relative positions of some relevant
entries in split(𝑇 ). Dashed, the levels at which numbers 𝐾 and 𝑥 could appear.

We obtain equations analogous to (C.10) and (C.11) just as in the proof of Theorem C.8, giving a con-
tradiction. ■

Lemma C.7. Let 𝑇 be a tableau in the alphabet B such that each column is admissible. Then, 𝑇 satisfies
(DC’) if and only if it satisfies (DC);
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(DC) if two adjacent columns of 𝑇 have one of the following two configurations:

𝑝 → 𝑎′ 𝑎′

𝑞 → 𝑏 ′ 𝑏 ′

𝑟 → 𝑏 𝑏
𝑠 → 𝑎 𝑎

then (𝑞 − 𝑝) + (𝑟 − 𝑠) < 𝑎 − 𝑏. Here, 𝑝 ≤ 𝑞 < 𝑟 ≤ 𝑠 .

Proof. It is similar to the proof of Lemma C.1 and thus omitted. ■

The following proof is essentially extracted from [She99, Thm. A.4], but adapted to our notation.

Theorem C.8. Let 𝑇 be a semistandard tableau in the alphabet C = {1 < · · · < 𝑛 < 𝑛′ < · · · < 1′}. A
column of𝑇 verifies (K1) if and only if it is admissible. The tableau𝑇 verifies (K2) if and only if the cosplit
version of 𝑇 is semistandard.

Proof. Let𝑇 be an admissible semistandard column tableau in the alphabet C. Say𝑇 is of length 𝑙 . If𝑎 and
𝑎′ appear in im𝑇 , in rows 𝑟 and 𝑠 respectively, then the number of entries in {1, 2, ..., 𝑎} ∪ {𝑎′, ..., 2′, 1′}
which appear in im𝑇 must not exceed 𝑎, by definition of admissibility. In formulas, 𝑟 + (𝑙 + 1 − 𝑠) ≯ 𝑎.
That is, (𝑠 − 𝑟 ) + 𝑎 > 𝑙 . The reciprocal is clear.

Let us now discuss (K2). Assumewithout loss of generality𝑇 is a tableauwith two only two columns,
whose cosplit version is semistandard. Assume for now that we have the first of the four configurations
of the definition. Then, cosplit(𝑇 ) will have the following configuration:

𝑝 → ∗ 𝑎
𝑞 → ∗ 𝑏
𝑟 → 𝑏 ′ ∗
𝑠 → 𝑎′ ∗

In the third column, between rows 𝑝 and 𝑞, we find some entries verifying the following inequalities:

𝑎 ≤ 𝑐1 < 𝑐2 < · · · < 𝑐𝑞−𝑝+1 ≤ 𝑏.

The equalities are not attained, since e.g. they both 𝑐𝑞−𝑝+1 and 𝑏 ′ belong to the same column of a cosplit
tableau. Similarly, between rows 𝑟 and 𝑠 , we find

𝑏 ′ < 𝑑 ′1 < 𝑑 ′2 < · · · < 𝑑 ′𝑠−𝑟−1 < 𝑎′, or, 𝑎 < 𝑑𝑠−𝑟−1 < · · · < 𝑑2 < 𝑑1 < 𝑏.

So we have found at least (𝑞 − 𝑝) + (𝑠 − 𝑟 ) numbers in (𝑎, 𝑏). They are all distinct by definition of the
cosplit version. Therefore, (𝑞 − 𝑝) + (𝑠 − 𝑟 ) < (𝑏 − 𝑎), as desired.

If 𝑇 was to have the second of the four configurations, a similar argument would yield the same
formula. We omit this.

It remains to show that if (K2) holds then the cosplit version of the tableau is semistandard. The
cosplit version of each column is strictly increasing, by definition. We need to check if the rows are
weakly increasing.

We proceed by contradiction. Assume cosplit(𝑇 ) is not semistandard. More precisely, assume that,
for some non-primed entries 𝑎 , 𝑥 , and 𝑦 , we find the following configuration in cosplit(𝑇 ), with
𝑎 > 𝑥 and 𝑎 ≤ 𝑦:

∗ 𝑎 𝑥 𝑦

(If there was an analogous configuration with all primed entries, a similar proof follows. The only
remaining possibilities are easily discarded by definition of the cosplit version or because𝑇 is semistan-
dard.) We assume 𝑇 to have only two columns.



APPENDIX C. AXIOMS FOR DE CONCINI’S AND KASHIWARA’S TABLEAUX 71

Recall the analysis before Example 8.5. We know, since 𝑥 and 𝑦 are in the same row, that they
belong to a block corresponding to some interval [𝐿, 𝐾 − 1]. In particular, we have found a number
𝐾 ∈ [2, 𝑛 + 1] such that 𝑥 ≤ 𝑦 < 𝐾 and whose properties we will shortly exploit.

Let 𝑏 ≥ 𝑦 be the greatest number smaller than 𝐾 such that 𝑏 appears in the fourth column of
cosplit(𝑇 ). Let 𝑐 be the greatest number smaller than 𝐾 such that 𝑐′ appears in the third column of
cosplit(𝑇 ). Finally, let 𝑑 ≤ 𝑐 be the smallest number greater than 𝑥 such that 𝑑′ appears in the third
column of cosplit(𝑇 ).

We illustrate all of these choices in Figure C.9. Note that all of the entries we consider in the third
and fourth column belong to the same block (corresponding to [𝐿, 𝐾 − 1]).

𝑝 → 𝑎
𝑞 → 𝑏
𝑟 → 𝑐 ′

𝑠 → 𝑑 ′

cosplit↦−−−−−→

∗ 𝑎 𝑥 𝑦

𝑏

𝑐 ′

𝑑 ′

𝐾

𝐾 ′

𝑥 ′

Figure C.9: On the left, a configuration of tableau𝑇 . On the right, the relative positions of some relevant
entries in cosplit(𝑇 ). Dashed, the levels at which numbers 𝐾 and 𝑥 could appear.

We claim that the corresponding entries 𝑎 , 𝑏 , 𝑐′ , 𝑑′ in𝑇 , in the given configuration, do not satisfy
axiom (K2’):

(𝑞 − 𝑝) + (𝑠 − 𝑟 ) ≮ max{𝑏, 𝑐} −min{𝑎, 𝑑}.

We begin by considering the left hand side. By definition of 𝐾,𝑏, and 𝑐 , we get that max{𝑏, 𝑐} = 𝐾 − 1.
On the other hand, 𝑎 > 𝑥 and 𝑑 > 𝑥 , and thus we get

max{𝑏, 𝑐} −min{𝑎, 𝑑} < 𝐾 − 1 − 𝑥 . (C.10)

We will now consider the right hand side. In the third column of cosplit(𝑇 ), between entries 𝑑′ and
𝑐′ (both inclusive), and between the entry to the left of 𝑏 and 𝑥 (both inclusive), we find (𝑞 − 𝑝 +
1) + (𝑠 − 𝑟 + 1) entries, all distinct. Furthermore, all numbers greater than 𝑥 and strictly smaller than 𝐾
appear at least once, by definition of 𝐾 . Therefore,

(𝑞 − 𝑝 + 1) + (𝑠 − 𝑟 + 1) = 𝐾 − 𝑥 . (C.11)

Equations (C.10) and (C.11) imply (𝑞 − 𝑝) + (𝑠 − 𝑟 ) ≥ max{𝑏, 𝑐} − min{𝑎, 𝑑}, contradicting (K2’), as
desired. ■



Appendix D

A SageMath library for symplectic
tableaux

(This is the documentation for a SageMath library implementing symplectic tableaux and symplectic
Gelfand–Tsetlin patterns. The script is available in a GitHub repository [GitHub].)

Symplectic tableaux are type C analogues of semistandard Young tableaux. Explicitly, the generat-
ing function of symplectic tableaux of a given shape _ (a partition) is the character of the irreducible
representation of 𝔰𝔭(2𝑛) indexed by _.

In the literature, several definitions of symplectic tableaux are available. We implement four of
these; King’s tableaux [Kin76], De Concini’s tableaux [DeC79], split tableaux [Kra98], and Kashiwara’s
tableaux [KN94]. Note that some functions on Kashiwara’s tableaux are already implemented in Sage
as part of the “tensor product of crystals” library.

class SymplecticTableau(SageObject):

Four different combinatorial models for symplectic tableaux are implemented. Internally, these
tableaux are always in the alphabet 1 < 2 < · · · < 2𝑛. Later, they may be displayed with a different
alphabet.

The default model is King’s. They are displayed in the alphabet 1 < 1′ < 2 < 2′ < · · · < 𝑛 < 𝑛′.
They are well-defined if every column is admissible, that is, if for every 𝑖 there are at most 𝑖 numbers
smaller or equal to 𝑖 ′ in each column.

A second model is De Concini’s. These are displayed in the alphabet 𝑛′ < · · · < 2′ < 1′ < 1 <

2 < · · · < 𝑛. These are well-defined if every column is admissible (after reordering to the King’s
alphabet) and their split version is semistandard. See [She99].

A third model is that of split tableaux. These are displayed in the alphabet 1 < 2 < · · · < 2𝑛.
These are well-defined when they are the split version of a De Concini tableau.

A final model is Kashiwara’s. These are displayed in the alphabet 1 < 2 < · · · < 𝑛 < 𝑛′ <
· · · < 2′ < 1′. These are well-defined when they are admissible and their cosplit version is a split
tableau.

Additionally, a custom type of tableaux can be defined by specifying the alphabet in which they
should be displayed. Functionality for custom tableaux is limited.

Skew tableaux are implemented by introducing 0s.
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Examples

sage: tab = SymplecticTableau(3, rows = [[1,1,2,3,3],[4,4,5,6]]); tab
1 1 1' 2' 2'
2 2 3 3'
sage: tab.is_well_defined()
True
sage: tab.Kashiwara()
1 2 2 2' 2'
3 3 3' 1'
sage: tab.f(1)
1 1' 1' 2' 2'
2 2 3 3'
sage: print(tab)
Symplectic tableau of type King, shape [5, 4], and weight x1^(-1)x3^(1)
sage: tab.shape()
[5, 4]
sage: latex(tab)
\ytableaushort{{1}{1}{1'}{2'}{2'},{2}{2}{3}{3'}}

Input

• n : Positive integer

• rows : SemistandardTableau or list of lists of integers. (Default: None)

• cols : SemistandardTableau or list of lists of integers. (Default: None)

• type : Either ‘King’, ‘DeConcini’, ‘split’ or ‘Kashiwara’. (Default: ’King’)

• alphabet : a list of strings of fixed length. (Default: None)

Exactly one of rows and cols must be provided.

.rows(self):

Returns the contents of the tableau as a list of lists of entries, row by row. (The entries are in
1 < 2 < · · · < 2𝑛.)

.list(self):

See .rows().

.cols(self):

Returns the contents of the tableau as a list of lists of entries, column by column. (The entries are
in 1 < 2 < · · · < 2𝑛.)

.transpose(self):

See .cols().

.len(self):

Returns the number of rows of the tableau.

.dict(self):
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Returns the contents of the tableau as dictionary where the keys are the cells of the tableau and
the entries are in 1 < 2 < · · · < 2𝑛.

.is_well_defined(self):

Checks if the tableau self is a tableau of type self._type.

.n(self):

Returns 𝑛; half the number of variables in the alphabet.

.size(self):

See .n().

.weight(self):

Returns a string describing a monomial; the weight of the tableau. (The weight is only defined for
King, De Cocini, or Kashiwara tableaux.)

.shape(self):

Returns a partition _ corresponding to the shape of the tableau.

.bender_knuth_involution(self, i, display=False):

Performs the 𝑖th Bender–Knuth involution on the tableau.
The 𝑖th Bender–Knuth involution applied to a tableau with weight 𝑥_ returns a tableau of same

shape and with weight 𝑠𝑖 .𝑥_ , where 𝑠0, ..., 𝑠𝑛−1 are the generators of theWeyl group of type C. These
are analogs of type A Bender–Knuth involutions.

To compute the 0th Bender–Knuth involution on a King tableau, we interpret it as a semis-
tandard tableau in the alphabet 1 < · · · < 2𝑛 and then perform the 1st (type A) Bender–Knuth
involution.

For 𝑖 = 1, ..., 𝑛−1, the 𝑖th Bender–Knuth involution on a King tableau is defined as the composite
of five maps. The first four maps are usual type A Bender–Knuth involutions. More precisely, if the
tableau is interpreted as a (type A) semistandard tableau in the alphabet 1 < · · · < 2𝑛, then the first
four maps are the 2𝑖th, the (2𝑖 − 1)st, the (2𝑖 + 1)st, and the 2𝑖th Bender–Knuth involutions. The
fifth map changes every {𝑖, 𝑖 ′}-vertical domino between rows 𝑖 and 𝑖 + 1 for a {𝑖 + 1, 𝑖 + 1′}-vertical
domino. It then resorts rows 𝑖 and 𝑖 + 1 as to make them increasing.

The function converts the tableau to a King tableau, performs the involution and converts back
to the original type. If display is set to True, then the intermediate stages of the algorithm are
displayed.
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Examples

sage: T = SymplecticTableau(3, rows = [[1,3,4],[5,5,6],[6,6]]); T
1 2 2'
3 3 3'
3' 3'
sage: T.bender_knuth_involution(0)
1' 2 2'
3 3 3'
3' 3'
sage: T.bender_knuth_involution(2, display = True)
Now applying Bender--Knuth to the tableau
T0 :
1 2 2'
3 3 3'
3' 3'
---------------
T1 :
1 2 3
2' 2' 3'
3' 3'
---------------
T2 :
1 2 3
2 2' 3'
3' 3'
---------------
T3 :
1 2 3
2 2' 3'
3 3
---------------
T4 :
1 2 2'
2 2' 3'
2' 3
---------------
T5 :
1 2 2'
2' 3 3'
3 3'
---------------
1 2 2'
2' 3 3'
3 3'

.to_GTpattern(self):

Returns the (King) symplectic Gelfand–Tsetlin pattern associated with the tableau.

Examples

sage: T = SymplecticTableau(3, rows = [[1,3,4],[5,5,6],[6,6]]); T
1 2 2'
3 3 3'
3' 3'
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sage: T.to_GTpattern()
3 3 2
3 2 0

3 0
2 0

1
1

.King(self):

Returns the King tableau corresponding to the tableau.
If self is a King tableau, this returns self.
If self is a DeConcini tableau, it applies Sheats’ bijection. See .Sheats().
If self is a split tableau, we first convert to a DeConcini tableau.
If self is a Kashiwara tableau, we first convert to a split tableau.

.DeConcini(self):

Returns the De Concini tableau corresponding to the tableau.
If self is a King tableau, it applies Sheats’ bijection. See .Sheats().
If self is a DeConcini tableau, this returns self.
If self is a split tableau, it takes the inverse of the split map. See .splitInverse().
If self is a Kashiwara tableau, it first converts to a split tableau.

.split(self):

Returns the split tableau corresponding to the tableau.
If self is a King tableau, it first converts to a De Concini tableau.
If self is a DeConcini tableau, it returns the split version. See .splitVersion().
If self is a split tableau, this returns self.
If self is a Kashiwara tableau, it returns the cosplit version. See .cosplitVersion().

.Kashiwara(self):

Returns the Kashiwara tableau corresponding to the tableau.
If self is a King tableau, it first converts to a De Concini tableau.
If self is a DeConcini tableau, it first converts to a split tableau.
If self is a split tableau, it takes the inverse of the cosplit map. See .cosplitInverse().
If self is a Kashiwara tableau, this returns self.

.to_type(self, type):

Converts to the desired type.
The bijections implemented are

King↔ De Concini↔ split↔ Kashiwara.

Any other bijection is taken to be a composite of some of the above.

Input

• type: Either ’King’, ’DeConcini’, ’split’, or ’Kashiwara’.
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Examples

sage: T = SymplecticTableau(3, rows = [[1,3],[5,5],[6,6]]); T
1 2
3 3
3' 3'
sage: T.to_type('DeConcini')
3' 2'
2' 1'
2 3
sage: T.to_type('split')
1 1 2 2
2 3 3 3
4 5 6 6
sage: T.to_type('Kashiwara')
1 2
3 3
3' 1'

.f(self, i):

Applies the crystal operator 𝑓𝑖 .
Crystal operators are already implemented in Sage for Kashiwara’s tableaux. See the documen-

tation for crystals.tensor_product. This functions converts the tableau to a Kashiwara tableau,
performs the crystal operator, and converts back to the original type.

Examples

sage: T = SymplecticTableau(3, rows = [[1,3],[5,5],[6,6]]); T
1 2
3 3
3' 3'
sage: T.f(1)
1' 2
3 3
3' 3'

.e(self, i):

Applies the crystal operator 𝑒𝑖 .
Crystal operators are already implemented in Sage for Kashiwara’s tableaux. See the documen-

tation for crystals.tensor_product. This functions converts the tableau to a Kashiwara tableau,
performs the crystal operator, and converts back to the original type.

Examples

sage: T = SymplecticTableau(3, rows = [[2,3],[5,5],[6,6]]); T
1' 2
3 3
3' 3'

sage: T.e(1)
1 2
3 3
3' 3'



APPENDIX D. A SAGEMATH LIBRARY FOR SYMPLECTIC TABLEAUX 78

class SymplecticTableauIterator

def transpose(tab)

Computes the transpose of a tableau.

def splitVersion(tab)

Returns the split version of a tableau.
Takes a tableau in the 1 < 2 < · · · < 2𝑛, relabels it to 𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛,

and returns its split version.
The split version of a tableau of shape _ = (_1, _2, ...) is defined as a certain tableau of shape

2_ = (2_1, 2_2, ...). The precise definition is available in [She99].

Examples

sage: T = SymplecticTableau(4, cols = [[1,2,6,7]], type = 'DeConcini'); T
4'
3'
2
3
sage: is_admissible(T.cols()[0], 4)
True
sage: SymplecticTableau(4, rows = splitVersion(T).list(), alphabet =
....: T._alphabet)
4' 4'
3' 1'
1 2
2 3

def cosplitVersion(tab):

Returns the cosplit version of a tableau.
Takes a tableau in the 1 < 2 < · · · < 2𝑛, relabels it to 𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛,

and returns its cosplit version. The cosplit version of a tableau of shape _ = (_1, _2, ...) is defined
as a certain tableau of shape 2_ = (2_1, 2_2, ...). The precise definition is available in [She99].

Examples

sage: a = ["4'", "3'", "2'", "1'", "1 ", "2 ", "3 ", "4 "]
sage: T = SymplecticTableau(4, cols = [[1,4,5,6]], alphabet = a); T
4'
1'
1
2
sage: is_coadmissible(T.cols()[0], 4)
True
sage: SymplecticTableau(4, rows = cosplitVersion(T).list(), alphabet = a)
4' 4'
3' 1'
1 2
2 3

def splitInverse(tab):

Takes the split version of a tableau (in the alphabet 1 < 2 < · · · < 2𝑛) and returns the original
tableau.



APPENDIX D. A SAGEMATH LIBRARY FOR SYMPLECTIC TABLEAUX 79

def cosplitInverse(tab):

Takes the cosplit version of a tableau (in the alphabet 1 < 2 < · · · < 2𝑛) and returns the original
tableau.

def is_admissible(c, n):

Takes a semistandard column in 1 < 2 < · · · < 2𝑛, relabels it to 𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · <
𝑛 and checks admissibility.

A column of length 𝑙 is admissible if for all 𝑎 such that both 𝑎′ and 𝑎 appear in the column, say
in rows 𝑠 and 𝑟 , one has (𝑠 − 𝑟 ) + 𝑎 > 𝑙 .

def is_coadmissible(c, n):

Takes a semistandard column in 1 < 2 < · · · < 2𝑛, relabels it to 𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · <
𝑛 and checks coadmissibility.

A column is coadmissible if for all 𝑎 such that both 𝑎′ and 𝑎 appear in the column, say in rows
𝑠 and 𝑟 , one has (𝑠 − 𝑟 ) + 𝑎 > 𝑛 + 1.

The use of the next functions is hopefully clear from their names. These are used in the implementation
of methods such as SymplecticTableau.King().

def King_to_DeConcini(tab)
def DeConcini_to_King(tab)
def King_to_Kashiwara(tab)
def Kashiwara_to_King(tab)
def DeConcini_to_Kashiwara(tab)
def Kashiwara_to_DeConcini(tab)
def King_to_split(tab)
def split_to_King(tab)
def DeConcini_to_split(tab)
def split_to_DeConcini(tab)
def Kashiwara_to_split(tab)
def split_to_Kashiwara(tab)
def KashiwaraTableau_to_CrystalElement(tab)
def CrystalElement_to_KashiwaraTableau(tab, n)

We choose to include the implementation of the following functions in this documentation.

def Sheats(tab):

Performs Sheats’ algorithm on tab.
Given a tableau in the alphabet 1 < 2 < · · · < 2𝑛, it is interpreted as a De Concini tableau in the

alphabet 𝑛′ < · · · < 2′ < 1′ < 1 < 2 < · · · < 𝑛. Then, the Sheats algorithm [She99] is performed
on the tableau, resulting on a King tableau in the alphabet 1 < 2 < · · · < 2𝑛 (interpreted as in the
alphabet 1′ < 1 < · · · < 𝑛′ < 𝑛).
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Examples

sage: tab = SymplecticTableau(3, rows = [[1, 2], [2, 3], [5, 6]],
....: type = 'DeConcini'); tab
3' 2'
2' 1'
2 3
sage: Sheats(tab)
1 2
3 3
3' 3'
sage: tab = SymplecticTableau(3, rows = [[1,3,3], [2,5], [4,6]],
....: type = 'DeConcini'); tab
3' 1' 1'
2' 2
1 3
sage: Sheats(tab)
1 2 2
2' 2'
3 3'

# we will be perfoming transformations on a subtableau and then
# adding some stuff to each column.
lam1 = tab._shape[0]
add = [[] for i in range(lam1)]
n = tab._n
cols = tab._cols

# n gives the size of the alphabet
for m in [1..n]:

# m is the entry to apply jdtq on
# m is taken from the alphabet 1<2<\cdots<2n
mPrime = m
mNormal = 2*n+1-m

# in the new order, the entries that we moved have another relative position
newMPrime = 2*(n-m)+1
newMNormal = 2*(mNormal-n)

# k is the number of times m' appears
k = len([col for col in cols if len(col)!=0 and col[0] == mPrime])

# the entries equal to m will stay fixed.
# but in the new tableau, they are in a different
# position of the alphabet, so translation is needed.
colsFix = [[newMNormal for i in col if i == mNormal] for col in cols]
colsFix = colsFix + [[] for i in range(lam1 - len(colsFix))]
# everything else that is not m or m' will be movable
colsMove = [[i for i in col if i != mNormal and i != mPrime] for col in cols]

# we will now transform colsMove and later add some extra entries
for i in range(lam1):

add[i] = colsFix[i] + add[i]
# this transformation expects a split tableau
Cols = sum([_splitCol(col, n) for col in colsMove], [])

while k != 0:
# we apply _sjdt to the only inner corner
(Cols, (p,q), n) = _sjdt(Cols, (1,k), n)

# we keep track of the entry we need to add
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# later to the tableau
cols = _splitInverseCols(Cols, n)
cols = cols + [[] for i in range(lam1-len(cols))]
add[q-1] = [newMPrime] + add[q-1]
for i in range(lam1):

add[i] = [newMNormal]*cols[i].count(mNormal) + add[i]

# we prepare for the next iteration
k = k + len([col for col in cols if mPrime in col]) - 1
colsMove = [[i for i in col if i != mNormal and i != mPrime] for col in cols]
Cols = sum([_splitCol(col, n) for col in colsMove], [])

colsMoved = _splitInverseCols(Cols, n)
colsMoved = colsMoved + [[] for i in range(lam1- len(colsMoved))]
# colsMoved = [[i-1 for i in col] for col in colsMoved]

# we prepare the body for the next iteration
cols = colsMoved

# now comes the time to add the entries that we were keeping aside
newCols = []
for i in range(lam1):

newCols.append(colsMoved[i] + add[i])

return SymplecticTableau(tab._n, cols = newCols, type = 'King')

def _sjdt(cols, puncture, n):

Takes a set of columns that form a punctured split skew tableau if the puncture is set at the input
location. We let 0s mark the empty skew boxes.

The puncture coordinates are in terms of the non-split version of the tableau, starting at (1,1).

(p,q) = puncture # starts at (1,1)

# Step 1:
# if the puncture is an outer corner, stop.
if len(cols) <= 2*q or len(cols[2*q]) < p:

if len(cols[2*q-1]) < p:
return (cols, (p,q), n)

# Step 2:
# if the column to the right is too short,
# just move the puncture down.

return _sjdt(cols, (p+1, q), n)
# Step 3:
# if the current column is too short,
# move the puncture to the right.
if len(cols[2*q-1]) < p:

return _sjdt_subroutine(cols, puncture, n)
# Step 4:
# when the algorithm reaches this step, it
# has checked that there are two possible
# locations to move the puncture to.
# We now compare entries to see where to go.
if cols[2*q-1][p-1] <= cols[2*q][p-1]:

return _sjdt(cols, (p+1, q), n)
else:

return _sjdt_subroutine(cols, puncture, n)

def _sjdt_subroutine(cols, puncture, n):

Takes a punctured split tableau (as an array of columns and a tuple indicating the puncture) and
returns the punctured split tableau resulting from a right slide.
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def SheatsInverse(tab)

Performs the inverse of the Sheats algorithm on tab.
Given a tableau in the alphabet 1 < 2 < · · · < 2𝑛, it is interpreted as a King tableau in the

alphabet 1′ < 1 < 2′ < 2... < 𝑛′ < 𝑛. Then, the Sheats inverse algorithm is performed on the
tableau, resulting on a De Concini tableau in the alphabet 1 < 2 < · · · < 2𝑛 (interpreted as in the
alphabet 𝑛′ < · · · < 1′ < 1 < · · · < 𝑛).

Examples

sage: tab = SymplecticTableau(3, rows = [[1, 3], [5, 5], [6, 6]]); tab
1 2
3 3
3' 3'
sage: SheatsInverse(tab)
3' 2'
2' 1'
2 3
sage: tab = SymplecticTableau(3, rows = [[1, 3, 3], [4, 4], [5, 6]]); tab
1 2 2
2' 2'
3 3'
sage: SheatsInverse(tab)
3' 1' 1'
2' 2
1 3

def check_all_BKinvolutions(lam, i, max_entry = None):

Checks that the 𝑖th Bender–Knuth involution is an involution on all tableaux of shape lam and
maximal entry max_entry.

class SymplecticPattern(SageObject):

A class for (King’s) Gelfand–Tsetlin patterns.

Warning

This class is very rudimentary as of now.

.list(self):

.len(self):

.to_tableau(self):

def KingTableau_to_SymplecticPattern(T)
def SymplecticPattern_to_KingTableau(G)

Examples

sage: G = SymplecticPattern([[3,2,0],[3,0,0],[3,0],[3,0],[3],[1]]); G
3 2 0
3 0 0

3 0
3 0

3
1

sage: G.to_tableau()
1 1' 1'
3' 3'
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